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PREFACE 

The California Energy Commission’s Energy Research and Development Division supports 
energy research and development programs to spur innovation in energy efficiency, renewable 
energy and advanced clean generation, energy-related environmental protection, energy 
transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California Public 
Utilities Commission to fund public investments in research to create and advance new energy 
solution, foster regional innovation and bring ideas from the lab to the marketplace. The 
California Energy Commission and the state’s three largest investor-owned utilities – Pacific 
Gas and Electric Company, San Diego Gas and Electric Company and Southern California 
Edison Company – were selected to administer the EPIC funds and advance novel technologies, 
tools and strategies that provide benefits to their electric ratepayers. 

The Energy Commission is committed to ensuring public participation in its research and 
development programs which promote greater reliability, lower costs and increase safety for 
the California electric ratepayer and include: 

• Providing societal benefits. 

• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost. 

• Supporting California’s loading order to meet energy needs first with energy efficiency 
and demand response, next with renewable energy (distributed generation and utility 
scale), and finally with clean conventional electricity supply. 

• Supporting low-emission vehicles and transportation. 

• Providing economic development. 

• Using ratepayer funds efficiently. 

Improving Short-Term Load Forecasts by Incorporating Solar PV Generation is the interim report for 
the grant number CEC-EPC-14-001 conducted by Itron, Inc. (doing business in California as 
IBS). The information from this project contributes to Energy Research and Development 
Division’s EPIC Program. 

All figures and tables are the work of the author(s) for this project unless otherwise cited or 
credited. 

For more information about the Energy Research and Development Division, please visit the 
Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 
Commission at 916-327-1551. 

 

http://www.energy.ca.gov/research/
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ABSTRACT 

This interim report investigates three different methods to integrate behind-the-meter solar 
photovoltaic (PV) forecasts with an operational net load forecast are investigated. This work 
determined how to best integrate rapidly growing behind-the-meter PV into net load forecasts 
for the California Independent System Operator. The different methods are run from 2012 
through mid-2015. Analysis of the improvements during 2014-2015 over a baseline net load 
forecast (that does not account for behind-the-meter PV) are analyzed to identify which method 
is best when and how much the forecasts are improved. The methods analyzed are being 
evaluated by the California Independent System Operator and could be used by other system 
operators experiencing rapid penetration of behind-the-meter PV.  The final project report will 
include details about solar forecasting improvements and quantify potential savings that result 
from improved net load forecasts. 
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EXECUTIVE SUMMARY 

Introduction 
California is a clean energy leader with an aggressive Renewables Portfolio Standard requiring 
33 percent of electricity generation to come from renewable energy by 2020 and 50 percent by 
2030. More solar systems, specifically photovoltaics (PV), are being installed each year spurred 
by financial incentives and cost declines in PVs. California has more than 3.8 gigawatts (GW) of 
installed on-site solar PV generation connected on the customer side of the meter. This behind-
the-meter generation is expected to increase three- to five-fold by 2020.   

To manage California’s huge electricity system reliably and efficiently, the California 
Independent System Operator (California ISO) depends on consistent and dependable 
electricity generation. Every five minutes, the California ISO forecasts electrical demand and 
directs the lowest cost generator to meet this demand. As the amount of intermittent or 
fluctuating solar generation increases, so do its impacts on operating California’s electric 
generation and transmission system.  The California ISO finds the electrical demand forecasts 
are becoming less reliable as large amounts of behind-the-meter solar generation are added to 
the grid.  This is especially true in the morning hours when loads can appear to be driven more 
by clouds such as a marine layer rather than temperatures.  In contrast, afternoon loads still are 
dominated by temperature changes driving air conditioning loads.  

Study Purpose and Process 
Solar power only generates electricity during the day, producing more electricity the more the 
sun shines.  Accurately predicting when and how this fluctuating resource can be used is 
essential for grid operators.  The California ISO uses a Baseline Load Forecast Model to calculate 
measured electricity loads of 15 minutes ahead to 10 days ahead.  This baseline framework 
consists of 193 individual forecast models.  Since the California ISO does not measure, either in 
real time or after the fact, any behind-the-meter solar PV generation, this means measured load 
does not equal actual end-user (for example, residential, commercial, industrial or agriculture) 
consumption of electricity.  At the time of this study, none of the California ISO load forecast 
models include the impact of behind-the-meter solar PV on measured loads so the existing load 
forecast models must be modified to capture the influence of behind-the-meter solar PV.  This 
interim report describes a study that evaluates three alternative model approaches for 
extending the California ISO electricity load forecast framework.   

• Error Correction Model. Most system operators initially make adjustments to the load 
forecasts afterwards to account for solar PV generation. On sunny days, they lower the 
load forecast and on cloudy days adjust the load upward.  The key advantage of the 
Error Correction Approach is the existing load forecast model can continue to be used 
without any changes.  All that is required is a method to forecast solar PV generation.   

• Reconstituted Loads Model.  Under the Reconstituted Loads approach the past 
measured load is reconstructed by adding back estimates of solar PV generation.  The 
load forecast model is then re-estimated against the revised loads. The new load 
forecasts are then adjusted by subtracting the forecasts of solar PV generation.  The 
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advantage of this approach is that the estimated load forecast model coefficients are not 
adversely impacted by the penetration of solar PV generation.  The disadvantage is a 
historical time series of solar PV generation must be developed and maintained to 
estimate the load forecast model coefficients.  Further, this approach assumes the 
historical solar PV generation time series is accurate.  If this is not true, this approach 
places too high of a weight on the solar PV generation values. 

• Model Direct.  Under the Model Direct approach, estimates of historical solar PV 
generation are added as influencing factors in the load forecast models; like the way 
other data such as day of the week and weather are included in the load forecast models. 
The estimated coefficient on the solar PV generation variable is the weight placed on this 
influencing factor. Also by including solar PV generation as an explanatory variable, the 
estimated coefficients on the remaining influencing or explanatory variables should not 
be biased.  This approach also provides a direct forecast of measured loads that accounts 
for solar PV generation, thus avoiding any after the fact processing of the load forecast. 
Like the Reconstituted Load Approach, this approach requires developing and 
maintaining a historical time series of solar PV generation.   

To evaluate the forecast performance of the alternative model approaches a series of 24-hour-
ahead load forecasts are simulated.  The 15-minute-ahead up to 24-hour-ahead alternative 
model load forecasts errors are compared to the corresponding baseline model load forecast 
errors.  This study’s goal is to demonstrate that one or more of the alternative approaches 
outperforms the baseline load forecast by reducing the average absolute forecast error and the 
associated forecast error variance.  In other words, the load forecast errors are on average 
smaller and the width of the forecast error distribution is tighter when using one or more of the 
alternative approaches.   

To conduct the simulations a historical time series of behind-the-meter solar PV generation is 
required.  Unfortunately, direct metering of the generation output of behind-the-meter PV 
installed in California is not available. To address this lack of historical generation data, the 
study relies on two sources of behind-the-meter solar PV generation estimates: 

• Clean Power Research Solar Generation Estimates.  Itron’s partner, Clean Power 
Research, is refining a forecast model that simulates each individual PV system in the 
California ISO.  This forecast is based on an ensemble of models to estimate the amount 
of power each system will produce in any given hour, combining numerous techniques 
to perform this service.  This micro focus is most useful when the exact locations of the 
solar installations are known.  For the California ISO, Clean Power Research has 
combined this micro level approach with a detailed database of solar PV installations to 
construct a time series of non-utility scale solar generation estimates by load zone. 

• Cloud Cover Driven Solar Generation Estimates. Not all system operators have access 
to the detailed installation data that Clean Power Research has gathered for California.  
In many cases, a system operator will have at best good estimates of the total installed 
capacity by the transmission zone and/or possibly by postal code.  Further, most system 
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operators only have access to hourly cloud cover data for the weather stations they use 
to forecast loads. To provide a basis for comparison to the Clean Power Research results, 
behind-the-meter solar PV generation estimates are derived by combining hourly cloud 
cover data collected by weather station with collective estimates of installed capacity by 
load zone.   

When combined with the three alternative load forecast approaches there are a total of six 
alternative load forecasts: (1) Error Correction with Clean Power Research solar PV generation 
estimates, (2) Error Correction with cloud-cover based solar PV generation estimates, (3) 
Reconstituted Load with Clean Power Research solar PV generation, (4) Reconstituted Load 
with cloud-cover based solar PV generation estimates, (5) Model Direct with Clean Power 
Research solar PV generation and (6) Model Direct with cloud-cover based solar PV generation.  

Study Results 
Each of these six forecasting methods were compared to the baseline forecast and were done for 
the California ISO, each of the three investor-owned utilities and each of the five California ISO 
zones (Pacific Gas and Electric Company [PG&E] Bay Area, PG&E Non-Bay Area, Southern 
California Edison [SCE] Coastal, SCE Inland, and San Diego Gas and Electric [SDG&E]). In 
general: 

• Not adjusting the California ISO baseline forecast models will lead only to further 
erosion of forecast accuracy and a wider distribution of forecast errors. 

• Direct modeling performed better than the baseline and other methods in the near term 
(15 minutes to four hours in advance).  The reconstituted load approach performed 
better for longer time horizons from four hours through to day-ahead horizons.  This 
suggests a hybrid or ensemble approach that combines these two methods is optimal. 

• SDG&E showed better improvements from forecasts that integrated behind-the-meter 
PV forecasts than the California ISO as a whole or any of the other California ISO zones.  
This outcome could be the result of a smaller geographic area combined with a higher 
penetration of behind-the-meter PV. 

• Hourly cloud cover driven estimates of solar generation can provide benefit over doing 
nothing, however, the detailed bottom-up approach implemented by Clean Power 
Research yields superior results. 

• The findings also indicate that 1 megawatt (MW) of solar PV generation may not reduce 
what the California ISO measures as a 1 MW load. A possible explanation for this 
counter intuitive finding is the California ISO measures only what happens in front of 
the meter not behind-the-meter.  If the installed solar PV leads to fundamental behind-
the-meter behavioral changes in how consumers use end-use equipment, then the 
impact of solar PV generation on load will be muted.  One possible behavioral change 
that will lead to offsetting load impacts is when consumers with solar PV keep their 
heating or cooling equipment running during the day.  Most likely consumers do this 
because the PV electricity is considered “free.”  This type of behavioral change can cause 
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a net increase in load levels and load weather sensitivity if the majority of these 
consumers turned off their heating or cooling equipment during the day before 
installing a PV system.    

• The model direct approach investigates how much of the solar PV generation actually 
results in net load increases associated with this type of behavioral change. The 
estimated impact from solar PV generation is less than 1 MW of load reduction for 1 
MW of solar PV generation.  The trend in solar PV installations also captures a net load 
increase in the shoulder periods (early morning and later afternoon) potentially because 
of behavioral changes after PV is installed.  Further research is required to determine the 
extent more solar PV is leading to behavioral changes.  If the research validates that 
behavioral changes are occurring, then the load forecasting problem will become only 
more complicated as more solar PV installations lead to more weather-sensitive loads.  
Similarly, developing a strong understanding of how consumer behavior can change as 
more electric vehicle charging and on-site storage are adopted which will ultimately be 
required to maintain acceptable load forecast performance.  

Project Benefits 
This improved net load forecasts offers several benefits to California. The quickest benefit is 
reducing the cost of grid regulation required to cover increasing load forecast errors.  By 
reducing the percentage error by just 0.1 percent (for example, from 1.7 percent to 1.6 percent), 
the California ISO and California ratepayers can save more than $2 million per year.  As the 
installed capacity of behind-the-meter PV increases, the annual savings will likely increase. 
Further financial savings from more accurate forecasts may also be possible and will be 
investigated.   

In addition to financial savings, emission savings from reducing the need for spinning reserves 
should be realized.  Finally, by reducing the demand for resources required to balance 
intermittent renewables, better renewable energy forecasting should make possible a higher 
proportion of solar generation for California’s grid.   

The final project report will include details about solar forecasting improvements and quantify 
potential savings that result from improved net load forecasts in more detail. 
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CHAPTER 1: 
Introduction 
Renewable Portfolio Standard requirements and decreasing cost of photovoltaics (PV) are 
resulting in significant amounts of behind-the-meter (BTM) solar PV systems being installed in 
California. Currently, more than 3.8 gigawatts (GW) of BTM PV capacity are installed in 
California.1  This capacity is expected to increase three- to five-fold by 2020.  Uncertainty in 
BTM solar PV output and its associated measured load impacts lead to overly conservative 
scheduling or regulation services and spinning reserves.  To reduce the reliance on regulation 
services and spinning reserves, the California Independent System Operator (CAISO) requires 
improved measured load forecasts.   

The load forecasts that the California ISO relies on for real-time system operations are 
developed using statistical models of five minute measured loads.  These data are collected in 
real time based on measurement points at each grid-connected generation resource, as well as, 
inter-region tie lines.  It is important to note that at the time of this study, the California ISO 
does not measure either in real time or ex post BTM solar PV generation.  This means measured 
load does not equal actual end-user (i.e., residential, commercial, industrial, agriculture, and 
other customer segments) consumption of electricity, since some portion of the consumption is 
sourced by BTM solar PV generation.   

Why does this matter?  It matters because the statistical load forecast models are designed to 
capture the factors that impact end-user electricity consumption.  With deeper penetration of 
BTM solar PV, load forecast models must be extended to predict when end users will lean on 
the grid to meet their electricity requirements versus relying on their own generation.  Prior to 
BTM solar PV, reliance on the grid was driven by traditional end-user consumption patterns—
patterns that are well-studied and predictable.  With BTM solar PV, reliance on the grid is 
driven both by end-user consumption patterns and the availability of BTM solar PV generation.  
The latter is driven by meteorological events not easily predicted.  

The net effect of a deep penetration of BTM solar PV is that forecasts of measured load are 
becoming less reliable.  This is especially true in the morning hours when loads appear to be 
driven more by the presence of clouds (e.g., marine layer) rather than temperatures.  In contrast, 
afternoon loads still appear to be dominated by temperature changes that drive air conditioning 
loads.  This may change over time when BTM solar PV penetration reaches a critical mass, 
where the variation in BTM solar PV generation is sufficiently large to outweigh the load 
variation due to variation in air conditioning loads.    

To better predict an increasing volatile load, the California ISO existing load forecast models 
need to be extended to capture the influence of BTM solar PV.  This study evaluates three 
alternative model approaches for extending the California ISO load forecast framework.  This 
interim report presents the alternative load forecast frameworks for incorporating BTM solar PV 

                                                      
1 Go Solar California website https:’//www.californiasolarstatistics.gov 
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forecasts and the forecast simulations that were implemented to evaluate the performance of 
these approaches.   

To put these approaches into context, below is a description of the existing California ISO load 
forecast model. 

1.1 The California ISO Short-Term Load Forecast Model 
The Baseline Load Forecast Model is used to provide forecasts of measured loads for forecast 
horizons of 15 minutes ahead out to ten days ahead.  The California ISO load forecasting system 
produces 15-minute level load forecasts for forecast horizons of 15-minutes ahead out ten (10) 
days ahead.  The load forecasts are updated automatically every 15-minutes to support 
generation scheduling and dispatching.  A separate set of load forecast models are used for each 
of the three major California ISO load zones:  Pacific Gas and Electric (PG&E), Southern 
California Edison (SCE) and San Diego Gas & Electric (SDG&E).  In addition, the California ISO 
develops sub-region forecasts for five climatic zones: PGE& Bay Area, PG&E Non-Bay Area, 
SCE Coastal, and SCE Inland load zones and SDG&E.  The load forecasts are driven by hourly 
weather forecasts of temperature and humidity for approximately 24 weather stations located 
throughout California.  The weather forecasts are updated hourly and are available from 
multiple weather forecast service providers.  This allows the California ISO to quantify the load 
forecast uncertainty due to weather forecast uncertainty.  An ensemble of load forecasts are 
generated by driving the separate weather forecasts through the load forecast models.  An 
optimal load forecast is then computed as a weighted average across the load forecast ensemble.  
The weighting scheme is based on the most recent forecast performance of each weather service 
provider.   

For each load zone (PG&E, PG&E Bay Area, PG&E Non-Bay Area, SCE, SCE Inland, SCE 
Coastal, and SDG&E), the baseline 15-minute load forecast modeling framework is composed of 
193 individual forecast models.  Each forecast model is designed to optimize the load forecast 
performance for specific forecast horizon.  The 193 individual forecast models that define the 
California ISO baseline 15-minute load forecast modeling framework are: 

1. Daily Energy Model:  A Neural Network Model of Daily Energy is used to capture daily 
swings in electricity demand as driven by changes in calendar and weather conditions. 

2. Day-Ahead Models: Designed for forecast horizons of four hours ahead and longer.  Is 
composed of 96, 15-Minute Regression Models that are driven by the forecasts from the 
Daily Energy Model, as well as by forecasted calendar and weather conditions.  Because 
the Day-Ahead models do not contain autoregressive terms, they are quick to react to 
changing weather conditions.   

3. Hour-Ahead Models:  Designed for forecast horizons of up to four to six hours ahead.  
Is composed of a second set of 96, 15-Minute Regression Models that launch off the most 
recent meter data through inclusion of autoregressive terms in addition to forecasted 
calendar and weather conditions.   
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The operational forecast that the California ISO utilizes is updated every 15 minutes and has a 
forecast horizon of the balance-of-the-day out ten days ahead.  The operational forecast is 
generated with the following steps: 

1. Generate a balance-of-the-day out ten days ahead forecast of Daily Energy using the 
Daily Energy model. 

2. Generate a balance-of-the-day out ten days ahead forecast of quarter hour loads using 
the Day-Ahead models. 

3. Generate a balance-of-the-day out ten days ahead forecast of quarter hour loads using 
the Hour-Ahead models. 

4. Create a single quarter hour load forecast by taking a weighted average of the Day-
Ahead and Hour-Ahead forecasts.  For forecast horizons of up to two hours ahead, 100% 
weight is placed on the Hour-Ahead forecasts.  Between two and four hours ahead, the 
weight cascades away from the Hour-Ahead forecast and towards the Day-Ahead 
forecast.  For forecast horizons of four hours ahead and longer, 100% weight is placed on 
the Day-Ahead forecast.   

This framework offers the following advantages over the use of a single set of 96, quarter hour 
models. 

• Forecasts of Daily Energy capture the influence of a full day of weather conditions on 
loads.  This influence is then channeled through to the Day-Ahead model forecasts via 
predicted Daily Energy values with day-of-the-week interaction terms.   

• The Day-ahead model forecasts are free to respond quickly to forecasted changes in 
weather conditions. 

• The Hour-Ahead models exploit the information contained in the most recent metered 
loads. 

• The blended forecast balances the value of autoregressive terms over near-term forecast 
horizons with the value of forecasted weather conditions over longer-term forecast 
horizons in a single forecast. 

Daily Energy Model Specification:  The Daily Energy Model is used to forecast total measured 
load for forecast horizons of balance-of-the-day to ten days ahead.  The forecast values from the 
Daily Energy model are included as explanatory variables in the 96, 15-minute level Day-Ahead 
models.  The reason for this is that the time series of Daily Energy tends to be smoother than the 
individual 15-minute load streams.  This allows the development of very powerful Daily 
Energy models.  Accurate forecasts of Daily Energy in turn are strong forecast drivers for the 
15-minute Day-Ahead models.   

The Daily Energy model utilizes Neural Network Techniques.  Because Neural Network 
Techniques describe a broad range of model specifications it is useful to describe the specific 
adaptation that is implemented at the California ISO.  The specific Neural Network Model that 
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is used for the California ISO is a five (5) Node Neural Network Model with a single Hidden 
layer pointing to a single output.  Translated to the language of a multivariate regression, the 
single output is the dependent variable of the model, namely Daily Energy which is computed 
as the sum of the 15-minute loads.2  A single layer means the predicted value is the weighted 
sum of the predicted value from each of the five nodes.  The weights can be considered the 
estimated parameters by the dependent variable (Daily Energy) being regressed on the 
predicted values from the five (5) nodes.  Further, the predicted values from the nodes do not 
interact with the values from the other nodes.  The nodes themselves have specific functional 
forms.  The first node utilizes a linear activation function which means the predicted value from 
this node is a weighted sum of the explanatory variables included on this node.  Further, there 
are no interactions between the explanatory variables included on this node.  The weights or 
coefficients are estimated as part of the model estimation process.  The second through fifth 
nodes use a logistic or sigmoid activation function.  This function form has proven to be 
extremely useful in applying Neural Network Techniques to the problem of load forecasting 
because it provides a continuous nonlinear approximation of the nonlinear response between 
loads and weather.  This approximation is very similar to what regressing loads against a third 
order polynomial in weather would derive.  Unlike a polynomial regression, where key 
interaction terms like weekend weather slope offsets would need to be constructed outside of 
the regression model and then added as additional explanatory variables, the mathematical 
properties of the sigmoid function allows for these interactions to be estimated directly as part 
of the model estimation process.  Although, the explanatory variables (like weather and 
weekend binary variables) need to be included in the list of explanatory variables included on a 
Node for the interactions to be estimated.  Like the linear node, the weights or coefficients of the 
nonlinear nodes (Node 2 through Node 5) are estimated as part of the model estimation 
process.    

The model can be written generally as follows: 

Equation 1:  Daily Energy Neural Network Model 

EdZ = �∅nZHd
Z,n�Ad

Z,n𝛼Z,n�+ εdZ
N

n=1

 

Where, 

EdZ is the daily sum of the 96 15-minute load values for Load Zone (Z) on Day (d) 

N is the number of Nodes in the Hidden Layer of the Neural Network Model.  Node 1 
(n=1) utilizes a Linear Activation Function.  Nodes (2 through 5) utilize a Sigmoid 
Activation Function.   

∅nZ is the weight placed on Node (n) 
                                                      
2  See J. S. McMenamin and Frank A. Monforte, Short Term Energy Forecasting with Neural Networks, The 
Energy Journal, Volume 19, Number 4 (1998) pages 43-61 for a comparison of regression and Neural 
Network modeling techniques for short term energy forecasting. 
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Hd
Z,n�Ad

Z,n𝛼Z,n� is the nth Node in the Hidden Layer 

Ad
Z,n is a vector of explanatory variables included on the nth Node in the Hidden Layer 

𝛼Z,n is a vector of weights placed on the explanatory variables included on the nth Node 
in the Hidden Layer 

εdZ is the Neural Network model error for Load Zone (Z) on Day (d) 

The Neural Network weights (∅𝑛𝑍 and 𝛼Z,n) are estimated using Non-Linear Least Squares.   

The explanatory variables included on the Nodes in the Hidden Layer are as follows. 

Node 1: Linear Activation Function 

• A set of Day Type Variables: (Sunday, Monday, Tuesday-Wednesday-Thursday ( TWT), 
Friday, Saturday) by Month 

• Day of the Week Variables 

• Holiday Variables 

• Linear Time Trend 

• Hours of Light Variable 

Node 2 and 3: Sigmoid Activation Function 

• Night, Morning, Afternoon, and Evening Heating Degree Day Variables 

• Night, Morning, Afternoon, and Evening Latent Heat Variables 

• Night, Morning, Afternoon, and Evening Wind Speed Variables 

• Prior Day Maximum and Minimum Temperature Variables 

• Day-of-the-Week Variables 

• Non-Winter Months, Monthly Binary Variables 

Node 4 and 5: Sigmoid Activation Function 

• Night, Morning, Afternoon, and Evening Cooling Degree Day Variables 

• Night, Morning, Afternoon, and Evening Latent Heat Variables 

• Night, Morning, Afternoon, and Evening Wind Speed Variables 

• Prior Day Maximum and Minimum Temperature Variables 

• Day-of-the-Week Variables 

• Non-Summer Months, Monthly Binary Variables 

The load forecasts generated from the Daily Energy Models can be written as follows. 
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Equation 2:  Predicted Daily Energy 

E�d
Z,T+h = �∅�nZHd

Z,n,T+h�Ad
Z,n,T+h𝛼�𝑍,𝑛�

N

n=1

 

Where, 

E�d,
Z,T+h is the h-step ahead forecast of Daily Measured Load for Zone (Z) made at time (T) 

for forecast day (d) 

T + h measures the number of time intervals in the forecast horizon for a forecast 
generated at time (T)  

Ad′
Z,n.T+h contains the h-step ahead forecasted values of the explanatory variables made at 

time (T) 

Hd
Z,n,T+h is the h-step ahead forecasted value for node (n) for Zone (Z) made at time (T),  

∅�nZ is the vector of estimated Node weights 

𝛼�𝑍,𝑛 is the vector of estimated Neural Network coefficients for Node (n) 

Day-Ahead Model Specification:  The 96 ,15-minute level Day-Ahead models can be described 
generically as:   

Equation 3: 96, 15-Minute Level Day-Ahead Models 

Ld,i
Z = F�Xd,i

Z βiZ� + ud,i
Z  

Where, 

Ld,i
,Z  is the measured load for load zone (Z), on day (d), and 15-minute time interval (i).  

Load zones include PGE Total, PG&E Bay Area, PG&E Non-Bay Area, SCE Total, SCE 
Inland, SCE Coastal, and SDG&E 

F�Xd,i
Z βiZ� is a generic representation of a regression model where Xd,i

Z  is a set of 
explanatory variables - excluding explicit treatment of Behind-the-Meter Solar 
Generation 

βiZ is a vector of model coefficients. 

ud,i
Z  is the forecast model error 

The vector of mode coefficients (βiZ) are estimated using Multivariate Least Squares.   

The explanatory variables included in the models are as follows. 

• A set of Day Type Variables: (Sunday, Monday, TWT, Friday, Saturday) by Month 

• Day of the Week Variables 

• Holiday Variables 
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• Linear Time Trend 

• Variables that Measure the Fraction of the Morning/Evening Hours that are dark 

• Coincident Heating Degree Day Variables 

• Coincident Heating Degree Day Variables with Sunday and Saturday interactions 

• Coincident Cooling Degree Day Variables 

• Coincident Cooling Degree Day Variables with Sunday & Saturday interactions 

• Prior Day Maximum and Minimum Temperature Variables 

• Predicted Values from the Daily Energy Model interacted with Day-of-the-Week 

The load forecasts generated from the Day-Ahead Models can be written as follows: 

Equation 4: 96, 15-Minute level Day Ahead Predicted Values 

DayAhead_L�d,i
Z,T+h = F�Xd,i

Z,T+hβ�iZ� 

Where, 

DayAhead_L�d,i
Z,T+h is the h-step ahead forecast of Measured Load for Zone (Z), forecast 

day (d) and time interval (i) made at time (T) 

h measures the number of forecast intervals ahead 

Xd,i
Z,T+h contains the h-step ahead forecasted values of the explanatory variables 

 β�iZ is the vector of estimated model coefficients 

Hour-Ahead Model Specification:  The 96, Hour-ahead models can be described generically as: 

Equation 5:  96, 15-Minute level Hour Ahead Models 

Ld,i
Z = G�Xd,i

Z δiZ� + � Ld,i−k
Z γkZ

K

k=1

+wd,i
Z  

Where, 

Ld,i
Z  is the measured load for load zone (Z), on day (d), and 15-minute time interval (i).   

G�Xd,i
Z δiZ� is a generic representation of a regression model where Xd,i

Z  is a set of 
explanatory variables - excluding explicit treatment of Behind-the-Meter Solar 
Generation (BTMSG) 

 δiZ is the vector of model coefficients 

 Ld,i−k
Z   is an autoregressive term of lag (i-k), where the maximum length of the 

autoregressive structure is (K) 
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γkZ is the coefficients for the autoregressive terms 

wd,i
Z  is the forecast model error 

The explanatory variables included in the models: 

• A set of Day Type Variables: (Sunday, Monday, TWT, Friday, Saturday) by Month 

• Day of the Week Variables 

• Holiday Variables 

• Linear Time Trend 

• Variables that Measure the Fraction of the Morning/Evening Hours that are dark 

• Coincident Heating Degree Day Variables 

• Coincident Heating Degree Day Variables with Sunday and Saturday interactions 

• Coincident Cooling Degree Day Variables 

• Coincident Cooling Degree Day Variables with Sunday and Saturday interactions 

• Prior Day Maximum and Minimum Temperature Variables 

• A set of the prior five (K), 15-minute load values 

In this case, the autoregressive terms replace the predicted value from the Daily Energy model. 

The load forecasts generated from the Hour-Ahead Models can be expressed as follows: 

Equation 6:  96, 15-Minute level Hour Ahead Predicted Values 

HourAhead_L�d,i
Z,T+h = G�Xd,i

Z,T+hδ�iZ� + � Ld,i−k
Z,T+h−kγ�kZ

K

k=1,T+h−k<T

+ � HourAhead_L�d,i−k
Z,T+h−kγ�kZ

K

k=1,T+h−k>T

 

Where, 

HourAhead_L�d,i
Z,T+h is the h-step ahead forecast of Measured Load for Zone (Z), forecast day 

(d) and time interval (i) made at time (T) 

h measures 15-minute time intervals - if a forecast is generated at 08:00 then T equals 08:00 
of day (d=0), the two hour-ahead Load forecast would then be indexed as T=08:00, d = 0, h = 
8 

Xd,i
Z,T+h contains the h-step ahead forecasted values of the explanatory variables 

δ�iZis the vector of estimated model coefficients 

Ld,i−k
Z,T+h−k is observed Measured Load for Zone (Z), forecast day (d) and time interval (i) 

available at time (T) 
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γ�kZ is the estimated coefficients for the autoregressive terms 

HourAhead_L�d,i−k
Z,T+h−k is the Hour Ahead forecasted Measured Load for Zone (Z), forecast day 

(d) and time interval (i-k) available at time (T+h) 

Blended Load Forecast:  The blended forecast balances the value of autoregressive terms over 
near-term forecast horizons with the value of forecasted weather conditions over longer-term 
forecast horizons in a single forecast.  The blended forecast is constructed in steps. 

Step 1: A 10-day-ahead load forecast is generated using the Daily Energy Model.  This ten 
day ahead forecast then feeds into the Day-Ahead Models.   

Step 2: The Day-Ahead Models are then used to generate a 10-day-ahead load forecast at the 
15-minute level of load resolution.   

Step 3: The Hour Ahead Models are then used to construct a separate 15-minute level load 
forecast.  

Step 4: A single blended load forecast is then constructed as follows: 

Equation 7: 15-Minute level Blended Forecast 

Blended_L�d,i
Z,T+h = ωh

ZHourAhead_L�d,i
Z,T+h + �1 −ωh

Z�DayAhead_L�d,i
Z,T+h 

Where, 

Blended_L�d,i
Z,T+h is the blended forecast of Measured Load for Zone (Z) made at time (T) for 

the fifteen minute time interval (T+h) 

HourAhead_L�d,i
Z,T+h is the Hour-Ahead forecast of Measured Load for Zone (Z) made at time 

(T) for the fifteen minute time interval (T+h) 

DayAhead_L�d,i
Z,T+h is the Day-Ahead forecast of Measured Load for Zone (Z) made at time (T) 

for the fifteen minute time interval (T+h) 

ωh
Z is the weight placed on the Hour-Ahead forecast for forecast period (T+h)  

Load Forecast Errors:   The Load Forecast errors are then computed as: 

Equation 8: 15-Minute Level Load Forecast Errors 

ed,i
Z,T+h = Ld,i

Z − Blended_L�d,i
Z,T+h 

Where, 

ed,i
Z,T+h is the forecast error for Zone (Z) for day (d) and 15-minute time interval (i) from a 

h-step-ahead forecast made at time (T)  
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1.2 The Impact of Solar PV on the California ISO Short-Term Load 
Forecast 
The statistical models described above use linear least squares to estimate the model 
coefficients.3  At a very high level, the process of estimating the model coefficients is an 
averaging of the historical load data, where the explanatory variables segment the load data 
over which the averages are taken.  While this is not an exact description of the least squares 
approach, it is a useful metaphor when describing how solar PV impacts the estimated 
coefficients of the California ISO short-term load forecast models.  Over time, an increased 
penetration of solar PV has the net effect of reducing on average measured load.  This implies 
that the estimated model coefficients embody this reduction in measured loads.  That is, the 
model coefficients are tuned to measured load under average solar PV production that occurred 
over the model estimation period.  As a result, the short-term load forecasts produce a forecast 
under average solar PV production conditions.  The challenge is on any given day actual solar 
PV production will not necessarily align with the average solar PV production.  On cloudy days 
when solar PV production is smaller than average, the load forecast will under forecast loads 
because the model fails to reflect the bump up in loads due to lower solar PV production.  On 
sunny days when solar PV production is greater than average, the load forecast will over 
forecast loads because the model fails to reflect the drop in loads due to higher solar PV 
production.   

To help fix ideas, the following examples illustrate how solar PV generation can impact a load 
forecast.  In these examples, assume the demand for electricity at noon, regardless of how it is 
sourced, is 1,300 MW.    

No Solar PV Generation:  Under this first example, there is no solar PV generation.  As a result, 
Measured Load, which is the load that a system operator sees, equals actual Demand for 
electricity services.  That is, 

Equation 9:  Measured Load at Noon vs. Actual Demand with no BTM Solar PV 

LdNoon = Dd
Noon 

Where,  

LdNoon is the telemetry measured load that the control room sees at Noon at day (d) 

D`d
Noon is the Demand for electrical services at Noon on day (d) 

Now consider developing a forecasting model of measured load.  If there is a year’s worth of 
measured load, the following regression model can be used. 

Equation 10: Regression Model to Predict Load at Noon with no BTM Solar PV. 

LdNoon = 𝛽1Interceptd + edNoon 
                                                      
3 The Neural Network model coefficients are estimated using the Levenberg-Marquardt algorithm, which 
is a specific application of Nonlinear Least Squares. 
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Where,  

Interceptd is an explanatory variable that takes on the value 1.0 for every day (d) 

edNoon is a random error with expected value of 0.0 

𝛽1 is the regression coefficient on the Intercept variable 

In this case, the estimated coefficient on the Intercept variable will be equal to the average 
measured load, or 1,300 MW.  As a result, the forecast from the estimated model will provide an 
accurate forecast of both measured load and actual demand.   

That is, 

Equation 11: Predicted Load at Noon with no BTM Solar PV. 

L�dNoon = 1300 x Interceptd = 1300 = Dd
Noon 

Where, 

L�dNoon is the forecast of measured load for day (d) at Noon 

With Constant Solar PV Generation:  Now, assume that 100 MW of solar PV generation is 
produced every day at noon.  The measured load can be re-written as follows: 

Equation 12: Measured Load with Constant BTM Solar PV. 

LdNoon = Dd
Noon − SGdNoon 

Because measured load will be 100 MW lower, the estimated coefficient from the regressed new 
lower measured load on the Intercept variable will lead to an estimated coefficient of 1,200 MW.  
In this case, the resulting model forecast will accurately forecast measured load, but will under 
predict demand by 100 MW.   

Equation 13: Regression Model to Predict Load with Constant BTM Solar PV. 

L�dNoon = 1200 x Interceptd = 1200 < Dd
Noon 

From the perspective of system operations, the fact that the forecast model under predicts 
demand for electricity is not a concern, since in this unrealistic example, they can rely on the 100 
MW of solar generation being there all the time.      

With Volatile Solar PV Generation:  In reality, solar PV generation is not as reliable as the 
above example suggests.  One can introduce uncertainty into the amount of solar generation 
that is available by assuming that half the time cloud cover is thick enough to drive the solar 
generation to 0 MW.  The other days are perfectly clear and the solar generation is 100 MW.  
This means that half the time measured load equals 1,200 MW and the other half of the time 
measured load equals 1,300 MW.  If the cloudy and sunny days are equal in number, the 
average measured load over the year of data will be 1,250 MW.  This implies the estimated 
coefficient on the Intercept variable will be equal to 1,250 MW.   That is, 
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Equation 14: Regression Model to Predict Load with Variable BTM Solar PV. 

LdNoon = 1250 x Interceptd 

Now consider using this model on two types of days:  a Cloudy Day and a Sunny Day.  On a 
Cloudy Day, solar PV generation is 0 MW and measured load will be equal to 1,300 MW, 
computed as (Dd

Noon − 0).  In this case, the model forecast of 1,250 MW under predicts measured 
load.  On a Sunny Day, solar PV generation is 100 MW giving a measured load of 1,200 MW, 
computed as (Dd

Noon − 100).  In this case, the model forecast will over predict measured load. 

The variability in solar generation means that the statistical model that was fitted to measured 
load will under predict measured loads on cloudy days and over predict measured loads on 
sunny days.  From the perspective of system operations, this means they will need additional 
spinning reserves available to cover the load variability and subsequent load forecast error 
introduced by the volatile solar PV generation.  The inherent bias that arises from fitting 
statistical models to measured load implies that a growing penetration of solar PV generation 
will lead to an erosion of the forecast accuracy of load forecast models that do not account for 
this impact. 

Accounting for Average Solar Generation:  Is it possible to improve the accuracy of the load 
forecast?  Assuming a perfect forecast of cloud over can be obtained, it is possible to accurately 
predict how much solar generation is going to be available tomorrow.  It seems reasonable to 
adjust the baseline load forecast with the forecast of solar generation.  Specifically, the adjusted 
forecast of measured load can be constructed as: 

Equation 15: Predicted Load with Perfectly Forecasted BTM Solar PV. 

L�dNoon = L�dNoon + (SG����Noon − SG�d
Noon) 

Where, 

L�dNoon is the adjusted forecast of measure load  

SG����Noon is the average solar PV generation over the model estimation period 

SG�d
Noon is the forecast of solar PV generation at Noon on day (d) 

Following the example from above, the average solar PV generation over the model estimation 
period is equal to 50 MW, computed as (50% of the days at 0 MW + 50% of the days at 100 MW).  
On a sunny day, the forecast of measured load will be equal to the predicted value of 1,250 MW 
from the model of measured load plus (50 MW – 100 MW), or 1,200 MW.  On a cloudy day, the 
forecast of measured load will be equal to the predicted value of 1,250 MW from the model of 
measured load plus (50 MW – 0 MW), or 1,300 MW.  On a sunny day, this approach lowers the 
forecast of measured load by 50 MW which is the additional solar generation that occurs on a 
sunny day versus an average day.  Conversely, on a cloudy day, this approach raises the 
forecast of measured load by an additional 50 MW to account for no solar generation taking 
place on that day.   
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These examples illustrate that a statistical model of measured load will capture in the estimated 
model coefficients the average impact of solar generation.  Accordingly, with volatile solar PV 
generation, the model-based forecast of measured load needs to be adjusted to account for the 
solar PV generation not already accounted for by the estimated model coefficients.  A key 
objective of this study is to develop a means for improving the short-term load forecast by 
incorporating forecasts of solar PV generation into the forecast framework.  The next section 
describes three alternative frameworks for incorporating the impact of solar PV generation into 
a forecast of measured loads.  This is followed by a discussion of the simulation framework that 
was developed to evaluate the potential to improve forecast accuracy by utilizing forecasts of 
solar PV generation.  Findings based on a summary of the simulation results are then presented. 
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CHAPTER 2: 
Incorporating the Impact of Solar PV Generation in a 
Load Forecast 
The existing California ISO short-term load forecast models do not include explicit treatment of 
solar PV generation.  As such, the forecasts are subject to the type of forecast bias described 
above.  In particular, the existing California ISO mid-day forecasts tend to be high on sunny 
days and low on cloudy days.  This study developed alternative forecast frameworks that 
account for the load impact of solar PV generation.  The study utilizes forecast simulations to 
compare the forecast accuracy of the existing California ISO forecast framework against the 
following three alternative modeling approaches.   

• Error Correction:  The Error Correction approach implements what many System 
Operators do initially when faced with the problem of solar PV generation.  Namely, 
they make ex post adjustments of the load forecast to account for forecasted values of 
solar PV generation.  On sunny days, the adjustment is to lower the load forecast and on 
cloudy days, the load forecast is adjusted upward.   The key advantage of the Error 
Correction Approach is the existing load forecast model can continue to be used without 
any changes.  All that is needed is a means of forecasting solar PV generation.   

• Reconstituted Loads:  Under the Reconstituted Loads approach the historical time series 
of measured load is reconstituted by adding back estimates of solar PV generation.  The 
load forecast model is then re-estimated against the reconstituted loads.  The subsequent 
reconstituted load forecasts are then adjusted ex post by subtracting away forecasts of 
solar PV generation to form a forecast of measured loads.  The advantage of this 
approach is any inherent bias that might be imposed on the estimated coefficients of a 
model of measured loads is controlled for by estimating the model coefficients against a 
time series of demand for power regardless of how it is sourced.  The disadvantage is a 
historical time series of solar PV generation needs to be developed and maintained to 
estimate the load forecast model coefficients.  Further, this approach assumes that the 
historical solar PV generation time series is accurate.  This may not necessarily be true, 
in which case this approach places too high of a weight on the solar PV generation 
values. 

• Model Direct:  Under this approach, the weight placed on the solar PV generation data 
is estimated directly by including these data as an explanatory variable in the load 
forecast models.  The estimated coefficient on the solar PV generation variable is the 
weight.  Also, in principle, by including solar PV generation as an explanatory variable, 
the coefficients on the remaining explanatory variables should not be biased.  This 
approach also provides a direct forecast of measured loads that accounts for solar PV 
generation, thus avoiding any ex post processing of the load forecast.  Like the 
Reconstituted Load Approach, this approach requires developing and maintaining an 
historical time series of solar PV generation.   
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What follows is a description of these three frameworks. 

2.1 Error Correction 
As described above, the Error Correction approach provides an ex post (or after the event) 
adjustment to an existing load forecast.  This framework is described below.  

Day-Ahead Error Correction Forecast:  The Day-Ahead Error Corrections recognize that the 
Day-Ahead model coefficients capture the average amount of solar PV generation that existed 
over the model estimation period.   Since the load forecast already reflects a certain level of solar 
PV generation the ex post error correction makes an adjustment based on how much the current 
solar PV generation differs from the historical average solar PV generation.  That is: 

Equation 16: Day-Ahead Error Correction Forecast 

DayAhead_L�d,i
Z,T+h = DayAhead_L�d,i

Z,T+h + ϑiZ�BTMSG����������iZ − BTMSG�
d,i
Z,T+h� 

Where, 

DayAhead_L�d,i
Z,T+h is the h-step ahead Error Corrected Day-Ahead Measured Load 

forecast made at time (T) 

DayAhead_L�d,i
Z,T+h is the h-step-ahead Day-Ahead Model forecast of Measured Load 

made at time (T) 

BTMSG����������iZ is the historical average of Behind-the-Meter Solar Generation for time interval 
(i) 

BTMSG�
d,i
Z,T+h is the h-step ahead forecast of Behind-the-Meter Solar Generation for Zone 

(Z) time interval (i) made at Time (T) 

ϑiZis a subjective adjustment weight which has a default value of 1.0 for all Load Zones 
(Z) and time intervals (i) 

In this case, if the forecast of solar PV generation is higher than the historical average, then the 
Day-Ahead Load Forecast will be adjusted downward.  For example, on a clear sunny day, the 
Day-Ahead Load Forecast will be adjusted downward to account for greater than average solar 
PV generation.  On the other hand, on cloudy days when solar PV generation forecasts are 
lower than the historical average, the Day-Ahead Load Forecast will be adjusted upwards.   

Hour-Ahead Error Correction Forecast:  The Hour-Ahead Forecast models are highly 
autoregressive.  In principle, this means a certain amount of solar PV generation is reflected in 
the Measure Load values that are passed into the models as autoregressive terms.  For example, 
the load forecast made at 11:00 for 11:15 launches off measured loads at 11:00, 10:45, 10:30, 10:15, 
and 10:00.  If it is a sunny day, these measured loads are lower than average due to the higher 
than average solar PV generation.  Conversely, on a cloud day these measured loads are higher 
than average due to a lower than average solar PV generation.  If at 11:15 one expects that the 
solar PV generation is going to be higher than what it was at 11:00, then one would want to 
adjust down the Hour-Ahead Forecast.  On the other hand, the Hour-Ahead Forecast should be 
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lifted if it is expected that there will be a drop in solar PV generation between 11:00 and 11:15.  
This suggests the following Error Correction: 

Equation 17:  Hour-Ahead Error Correction Forecast 

HourAhead_L�d,i
Z,T+h = HourAhead_L�d,i

Z,T+h + ∇iZ�BTMSG�
d,i−1
Z,T+h−1 − BTMSG�

d,i
Z,T+h� 

Where, 

HourAhead_L�d,i
Z,T+h is the h-step-ahead Error Corrected Hour-Ahead Measured Load 

forecast for Zone (Z) made at time (T) 

HourAhead_L�d,i
Z,T+h is the h-step-ahead Hour-Ahead Model forecast of Measured Load for 

Zone (Z) made at time (T) 

BTMSG�
d,i−1
Z,T+h−1 the (h-1) step-ahead forecast of Behind-the-Meter Solar Generation for 

Zone (Z) made at Time (T) 

BTMSG�
d,i
Z,T+h is the h-step-ahead forecast of Behind-the-Meter Solar Generation for Zone 

(Z) made at Time (T) 

∇iZis a subjective adjustment weight that has a default value of 1.0 for all Load Zones (Z) 
and time intervals (i) 

This approach uses the difference of forecasts of solar PV generation to make the error 
correction because real-time measurement of solar PV generation does not exist.  If real-time 
measurement data become available, then the forecast value BTMSG�

d,i−1
Z,T+h−1 would be replaced 

with the measurement value.   

For this study, the adjustment weights (ϑiZ,∇iZ) are assumed fixed at a default value of 1.0.  In 
practice, as forecasters build experience, it is expected that the adjustments weights would be 
modified to account for the forecaster’s confidence in the solar PV generation forecasts, as well 
as the forecast performance of the adjustments.  

Error Corrected Measured Load Forecast:  The Error Corrected Measured Load Forecast is then 
constructed as a weighted average of the Error Corrected Hour-Ahead and Day-Ahead 
forecasts.  Formally, 

Equation 18:  Error Corrected Load Forecast 

ErrorCorrection_Blended_L�d,i
Z,T+h = ωh

ZHourAhead_L�d,i
Z,T+h + �1 −ωh

Z�DayAhead_L�d,i
Z,T+h 

The load forecast errors from the Error Correction Model are then computed as: 

Equation 19:  Error Corrected Load Forecast Errors 
 

ErrorCorrection_ed,i
Z,T+h = Ld,i

Z − ErrorCorrection_Blended_L�d,i
Z,T+h 

Where, 
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ErrorCorrection_ed,i
Z,T+h is the Load Forecast Error for Zone (Z) for day (d) and 15-minute 

time interval (i) from a h-step-ahead forecast made at time (T)  

2.2 Reconstituted Loads 
Under the Reconstituted Loads approach, the historical time series of measured load is 
reconstituted by adding back estimates of solar PV generation.  The load forecast model is then 
re-estimated against the reconstituted loads.  The resulting reconstituted load forecast is then 
reduced by a forecast of solar PV generation to provide a forecast of measured load.  This 
framework is described below.   

Estimates of demand for power regardless of how it is sourced are created by adding estimates 
of solar PV generation to measured loads.  Specifically, 

Equation 20:  Reconstituted Loads 

Reconstituted_Ld,i
Z = Ld,i

Z + BTMSGd,i
Z  

Where, 

BTMSGd,i
Z   is the estimated BTM Solar Generation for load zone (Z), on day (d) and time 

interval (i) 

The original California ISO baseline load forecast model is then re-estimated using the 
Reconstituted Loads as the dependent variable.  That is, 

Equation 21:  Reconstituted Loads Daily Energy Model 

Reconstituted_EdZ = �∅nZHd
Z,n�Ad

Z,n𝛼Z,n�+ εdZ
N

n=1

 

Where, 

Reconstituted_EdZ is the daily sum of the 96 15-minute reconstituted load values for Load 
Zo 

The load forecasts generated from the Daily Energy Model can be written as follows: 

Equation 22: Forecast of Daily Reconstituted Energy 

Reconstituted_E�dZ = �∅�nZHd
Z,n�Ad

Z,n𝛼�Z,n�
N

n=1

 

Where, 

Reconstituted_E�d,
Z  is the forecast of Daily Reconstituted Load for Zone (Z) made at time 

(T) for forecast day (d) 

Day-Ahead Model Specification:  The 96, 15-minute level Day-Ahead models can be described 
generically as:   
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Equation 23: 96, 15-Minute Level Reconstituted Load Day-Ahead Models 

Reconstituted_Ld,i
Z = F�Xd,i

Z βiZ� + ud,i
Z  

Where, 

Reconstituted_Ld,i
,Z  is the reconstituted load for load zone (Z), on day (d), and 15-minute 

time interval (i).   

The load forecasts generated from the Day-Ahead Models can be written as follows: 

Equation 24: 96, 15-Minute Level Day-Ahead Reconstituted Load Forecasts 

DayAhead_Reconstituted_L�d,i
Z,T+h = F�Xd,i

Z,T+hβ�iZ� 

Where, 

DayAhead_Reconstituted_L�d,i
Z,T+h is the h-step ahead forecast of Reconstituted Load for 

Zone (Z), forecast day (d) and time interval (i) made at time (T) 

Day-Ahead Measured Load Forecast:  To recast the forecasts of Reconstituted Loads into 
forecasts of Measured Loads, the following ex post adjustment is made to the Day-Ahead 
Reconstituted Load forecasts.  

Equation 25: 96, 15-Minute Level Day-Ahead Measured Load Forecasts 

DayAhead_MeasuredLoad_L�d,i
Z,T+h = DayAhead_Reconstituted_L�d,i

Z,T+h − BTMSG�
d,i
Z,T+h 

Where, 

DayAhead_MeasuredLoad_L�d,i
Z,T+h is the h-step ahead forecast of Measured Load from the 

Day Ahead models 

DayAhead_Reconstituted_L�d,i
Z,T+h is the h-step-ahead Day-Ahead Model forecast of 

Reconstituted Load 

BTMSG�
d,i
Z,T+h is the h-step ahead forecast of Behind-the-Meter Solar Generation for Zone 

(Z) time interval (i) made at Time (T) 

Hour-Ahead Model Specification:  The 96, Hour-ahead models can be described generically as:   

Equation 26: 96, 15-Minute Level Reconstituted Load Hour-Ahead Models 

Reconstituted_Ld,i
Z = G�Xd,i

Z δiZ� + �Reconstituted_Ld,i−k
Z γkZ

K

k=1

+wd,i
Z  

Where, 

Reconstituted_Ld,i
Z  is the reconstituted load for load zone (Z), on day (d), and 15-minute 

time interval (i).   
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The load forecasts generated from the Hour-Ahead Models can be expressed as follows: 

Equation 27: 96, 15-Minute Level Hour-Ahead Reconstituted Load Forecasts 

HourAhead_Reconstituted_L�d,i
Z,T+h

= G�Xd,i
Z,T+hδ�iZ� + � Reconstituted_Ld,i−k

Z,T+h−kγ�kZ
K

k=1,T+h−k<T

+ � HourAhead_Reconstituted_L�d,i−k
Z,T+h−kγ�kZ

K

k=1,T+h−k>T

 

Where, 

HourAhead_Reconstituted_L�d,i
Z,T+h is the h-step ahead forecast of Reconstituted Load for 

Zone (Z), forecast day (d) and time interval (i) made at time (T) 

HourAhead_Reconstituted_L�d,i−k
Z,T+h−k is the Hour Ahead forecasted Measured Load for 

Zone (Z), forecast day (d) and time interval (i-k) available at time (T+h) 

Hour-Ahead Measured Load Forecast:  To recast the forecasts of Reconstituted Loads into 
forecasts of Measured Loads the following ex post adjustment is made to the Hour-Ahead 
Reconstituted Load forecasts.  

Equation 28: 96, 15-Minute Level Hour-Ahead Measured Load Forecasts 

HourAhead_MesasuredLoad_L�d,i
Z,T+h = HourAhead_Reconstituted_L�d,i

Z,T+h − BTMSG�
d,i
Z,T+h 

Where, 

HourAhead_MeasuredLoad_L�d,i
Z,T+h is the h-step ahead forecast of Measured Load 

HourAhead_Reconstituted_L�d,i
Z,T+h is the h-step-ahead Hour-Ahead Model forecast of 

Reconstituted Load 

BTMSG�
d,i
Z,T+h is the h-step ahead forecast of Behind-the-Meter Solar Generation for Zone 

(Z) made at Time (T) 

Measured Load Forecast from the Reconstituted Load Approach:  The Measured Load 
Forecast is then constructed as a weighted average of the Adjusted Hour-Ahead and Day-
Ahead forecasts.  Formally, 

Equation 29: 96, 15-Minute Level Blended Measured Load Forecasts 

Reconstituted_Blended_L�d,i
Z,T+h

= ωh
ZHourAhead_MeasuredLoad_L�d,i

Z,T+h + �1 −ωh
Z�DayAhead_MeasuredLoad_L�d,i

Z,T+h 

The load forecast errors from the Reconstituted Load Approach are then computed as: 

Equation 30: 96, 15-Minute Level Load Forecast Errors 
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Reconstituted_ed,i
Z,T+h = Ld,i

Z − Reconstituted_Blended_L�d,i
Z,T+h 

Where, 

Reconstituted_ed,i
Z,T+h is the Measured Load Forecast Error for Zone (Z) for day (d) and 

fifteen-minute time interval (i) from a h-step-ahead forecast made at time (T)  

2.3 Model Direct 
Under this approach, the existing California ISO Baseline Load Forecast models are extended to 
include explanatory variables that are designed to capture the impact of solar PV generation on 
measured loads.  The model framework is described below. 

The revised load forecast model are: 

Equation 31: Model Direct Daily Energy Model 

EdZ = �∅nZHd
Z,n�Sd

Z,nα?
Z,n�+ εdZ

N

n=1

 

Where, 

EdZ is the daily sum of the 96 15-minute measured load values for Load Zone (Z) on Day 
(d) 

N is the number of Nodes in the Hidden Layer of the Neural Network Model.  Node 1 
(n=1) utilizes a Linear Activation Function.  Nodes (2 through 5) utilize a Sigmoid 
Activation Function.   

∅nZ is the weight placed on Node (n) 

Hd
Z,n�Sd

Z,nα?
Z,n� is the nth Node in the Hidden Layer 

Sd
Z,n is a vector of explanatory variables included on the nth Node in the Hidden Layer 

which equals the original vector of explanatory variables plus the time series of Behind-
the-Meter Solar Generation (Sd

Z,n = Ad
Z,naugmented with BTMSGdZ) 

αZ,n is a vector weights placed on the explanatory variables included on the nth Node in 
the Hidden Layer 

εdZ is the Neural Network model error for Load Zone (Z) on Day (d) 

The load forecasts generated from the Daily Energy Model can be written as follows: 

Equation 32: Model Direct Daily Energy Forecast 

ModelDirect_E�dZ = �∅�nZHd
Z,n�Sd

Z,n𝛼�Z,n�
N

n=1

 

Where, 
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ModelDirect_E�d,
Z  is the forecast of Daily Measured Load for Zone (Z) made at time (T) for 

forecast day (d) 

Day-Ahead Model Specification:  The 96 15-minute level Day-Ahead models can be described 
generically as:   

Equation 33: 96, 15-Minute Level Model Direct Day-Ahead Models 

Ld,i
Z = F�Xd,i

Z βiZ� + ϑiZBTMSGd,i
Z + ud,i

Z  

Where, 

Ld,i
,Z  is the measured load for load zone (Z), on day (d), and 15-minute time interval (i) 

BTMSGd,i
Z  is the estimated Behind-the-Meter Solar Generation for load zone (Z), on day 

(d) and time interval (i) 

ϑiZ is the model coefficient for the Behind-the-Meter Solar Generation time series 

The load forecasts generated from the Day-Ahead Models can be written as follows: 

Equation 34: 96, 15-Minute Level Model Direct Day-Ahead Load Forecasts 

DayAhead_ModelDirect_L�d,i
Z,T+h = F�Xd,i

Z,T+hβ�iZ�+ ϑ�iZBTMSG�
d,i
Z,T+h 

Where, 

DayAhead_ModelDirect_L�d,i
Z,T+h is the h-step ahead forecast of Measured Load for Zone 

(Z), forecast day (d) and time interval (i) made at time (T) 

BTMSG�
d,i
Z,T+h is the h-step ahead forecast of Behind-the-Meter Solar Generation for Zone 

(Z), forecast day (d) and time interval (i) made at time (T) 

Hour-Ahead Model Specification:  The 96 Hour-Ahead models can be described generically as:   

Equation 35: 96, 15-Minute Level Model Direct Hour-Ahead Models 

Ld,i
Z = G�Xd,i

Z δiZ� + ∇iZ�BTMSGd,i−1
Z − BTMSGd,i

Z �+ � Ld,i−k
Z γkZ

K

k=1

+wd,i
Z  

Where, 

Ld,i
Z  is the measured load for load zone (Z), on day (d), and 15-minute time interval (i).  

BTMSGd,i
Z is the estimated Behind-the-Meter Solar Generation for load zone (Z), on day 

(d) and time interval (i) 

BTMSGd,i−1
Z is the estimated Behind-the-Meter Solar Generation for load zone (Z), on day 

(d) and time interval (i-1) 

∇iZ is the estimated coefficient or weight placed on the 15-minute ramp in Behind-the-
Meter Solar Generation 
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The Hour-Ahead Model mimics the approach utilized in the Error Correction Approach in that 
the solar PV generation enters into the model as the difference between the current interval and 
the prior fifteen minute interval value.  When cast in this fashion, the revised Hour-Ahead 
Model provides a means for statistically estimating the weight that should be placed on this 
difference.  That is, the adjustment weight that is judgmentally imposed under the Error 
Correction Approach is estimated directly under this approach.   

The load forecasts generated from the Hour-Ahead Models can be expressed as follows: 

Equation 36: 96, 15-Minute Level Model Direct Hour-Ahead Forecasts 

HourAhead_ModelDirect_L�d,i
Z,T+h

= G�Xd,i
Z,T+hδ�iZ�+ ∇iZ�BTMSG� d,i−1

Z − BTMSG� d,i
Z �+ � Ld,i−k

Z,T+h−kγ�kZ
K

k=1,T+h−k<T

+ � HourAhead_ModelDirect_L�d,i−k
Z,T+h−kγ�kZ

K

k=1,T+h−k>T

 

Where, 

HourAhead_ModelDirect_L�d,i
Z,T+h is the h-step ahead forecast of Measured Load for Zone 

(Z), forecast day (d) and time interval (i) made at time (T) 

HourAhead_ModelDirect_L�d,i−k
Z,T+h−k is the Hour Ahead forecasted Measured Load for Zone 

(Z), forecast day (d) and time interval (i-k) available at time (T+h) 

Measured Load Forecast from the Direct Model Approach:  The Measured Load Forecast is 
then constructed as a weighted average of the Hour-Ahead and Day-Ahead forecasts.   

Formally, 

Equation 37: Model Direct Blended Measured Load Forecast 

ModelDirect_Blended_L�d,i
Z,T+h

= ωh
ZHourAhead_ModelDirect_L�d,i

Z,T+h + �1 −ωh
Z�DayAhead_ModelDirect_L�d,i

Z,T+h 

The load forecast errors from the Model Direct are then computed as: 

Equation 38: Model Direct Measured Load Forecast Errors 

ModelDirect_ed,i
Z,T+h = Ld,i

Z − ModelDirect_Blended_L�d,i
Z,T+h 

Where, 

ModelDirect_ed,i
Z,T+h is the Load Forecast Error for Zone (Z) for day (d) and 15-minute 

time interval (i) from a h-step-ahead forecast made at time (T)  
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CHAPTER 3: 
Solar PV Generation Estimates 
This chapter presents the two alternative sources for solar generation that are used to evaluate 
the forecast performance of the Error Correction, Reconstituted Loads, and Direct Modeling 
approaches described above.  The first source of solar generation data is developed by Clean 
Power Research (CPR), which has a detailed database of solar installations in the PG&E, SCE, 
and SDG&E service territories.  These detailed data are combined with satellite imagery to 
construct bottom-up estimates of solar generation by the PG&E Bay Area, PG&E Non-Bay Area, 
SCE Coastal, SCE Inland and SDG&E load zones.  The second source of solar generation mimics 
what a number of system operators have used as starting point for addressing the impact of 
solar generation on their loads, which is to leverage the cloud cover data they already collect.  
Under this approach, the hourly cloud cover data collected by weather stations are combined 
with estimates of installed capacity to estimate solar generation by load zone.  The purpose of 
developing this second source is to provide a basis for comparison to the forecast improvements 
that can be expected when the solar generation estimates/forecasts are sourced from a 
commercial vendor like CPR. 

3.1 CPR Solar Generation Estimates 
Much of the focus in the area of solar generation forecasting is on developing accurate forecasts 
of panel-level solar irradiance.  The techniques range from vector decomposition of satellite 
imagery to vector decomposition of location specific cloud cover observations.  This analysis is 
geared for forecasting generation at utility solar installations and/or solar generation over a 
small geographic footprint.  This micro focus is most useful when the exact locations of the solar 
installations are known.  For the case of the California ISO, CPR has combined this micro level 
approach with a detailed database of solar PV installations to construct a rich time series of non-
utility scale solar generation estimates by load zone.  These estimates are used to evaluate the 
forecast performance of the alternative load forecast approaches described above. 

The solar capacity and generation data compiled by CPR for this study are summarized in Table 
1 and Table 2 below.   

• Total solar capacity is estimated to have grown from 653.0 MW at the beginning of 2010 
to 4,081.5 MW by June 2015.  Maximum solar generation output in June has grown by 
over a factor of seven, from 369 MWh in 2010 to 2,665 MWh in 2016. 

• PG&E accounts for 2,050.7 MW, or about half of the installed capacity in June 2015.  
Approximately 70% of the PG&E installations have been the Non-Bay Area portion of 
the service territory.  The 2,050.7 MW of installed capacity generated at its maximum an 
estimated 1,320.8 MWh of electricity.    

• SCE accounts for about 38% of the total installed capacity, or 1,556.2 MW.  
Approximately 57% of this capacity has been installed in the Inland portion of SCE’s 
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service territory.  The 1,556.2 MW of installed capacity led to a maximum of 1,028.5 
MWh of solar generation. 

• SDG&E accounts for 474.6 MW of installed capacity, which is approximately 12% of the 
total.  Maximum solar generation in June has grown from an estimated value of 44.2 
MWh in 2010 to 316.0 MWh in 2015, which is a growth of over seven times. 
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Table 1: Estimated Installed BTM Solar Capacity (MW) 
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Table 2: Estimated Maximum BTM Solar Generation (MWh) 
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As illustrated above, increased penetration of solar PV can lead to growing load volatility that 
in turn will lead to eroding load forecast performance.  To put the solar generation data derived 
by CPR into a load forecasting context, it is useful to consider what fraction of load volatility 
could be associated with solar generation volatility.  Figure 1 presents the ratio of solar 
generation volatility to load volatility for the total PG&E service territory.  Here, solar 
generation volatility is measured by the standard deviation (stdkwh) of the estimated solar 
generation output (solargenkwh), gold area in the chart, by time interval.  Load volatility is 
measured by the standard deviation of loads (red area in the chart) by time interval.  The ratio 
of these two volatility measures is given by the green line in the chart.  For the case of PG&E. 
the ratio of solar generation volatility to PG&E load volatility peaks around 10 am at a value of 
0.22.  This is in stark contrast to SCE (shown in Figure 2), which also peaks mid-morning but at 
a much lower value of 0.13.  As shown in Figure 3, SDG&E has a similar volatility profile as 
PG&E, with the ratio of solar generation volatility to SDG&E load volatility peaking mid-
morning with a value of 0.20.  A comparison the ratios for PG&E, SCE, and SDG&E are 
presented in Figure 4.   

From a model perspective, the greater the proportion of load volatility that can be associated 
with or explained by the volatility of solar generation, the more improvement in model fit that 
can be expected when adding solar generation as an explanatory variable in a model.  To help 
fix ideas, consider a simple analogy of trying to measure (predict) the height of a lake.  If the 
lake is relatively shallow, accurately predicting the height of the waves is relatively important.  
In contrast, wave height is noise when considering trying to measure the height of a lake as 
deep as, say, Lake Tahoe.  In load forecasting, the waves are the measured by the volatility of 
solar generation.  The depth of the lake is measured by the load volatility.  The smaller the ratio 
of solar volatility (i.e., the waves) to load volatility (i.e., depth of the lake) the less weight a 
statistical model will place on the solar generation variables.  As a result, it is less likely that 
adding forecasts of solar generation will improve the load forecast.  Conversely, the higher the 
ratio the more likely there will be forecast performance gains from adding forecasts of solar 
generation to the model.   

The data in Figure 4 suggest that the forecast performance improvements will be less for SCE 
than for PG&E and SDG&E because of the lower ratio.  Further, it is anticipated that there will 
be bigger performance gains in the mid-morning hours than the afternoon hours.  Finally, the 
forecast gains are expected to be little to none for the dawn and dusk hours when solar 
generation output is at its lowest values.   
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Figure 1: Ratio of Solar Generation Volatility to Load Volatility: PG&E Total 

 

In this and subsequent figures, 

Stdkwh is the estimated load variability (using the Standard Deviation of Measured Loads 
in MW) 

solargenkwh is the estimated solar PV generation variability (using Standard Deviation of 
BTM solar PV generation in MW) 

Ratio is the ratio of solargenkwh to stdkwh 
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Figure 2: Ratio of Solar Generation Volatility to Load Volatility: SCE Total 

 
Figure 3: Ratio of Solar Generation Volatility to Load Volatility: SDG&E 
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Figure 4: Ratio of Solar Generation Volatility to Load Volatility:  IOU Comparison 

 

 

3.2 Cloud Cover Driven Solar Generation Estimates 
Unfortunately, not all system operators have access to the detailed installation data that CPR 
has gathered for the state of California.  In many cases, a system operator will have at best good 
estimates of the total installed capacity by transmission zone and/or possibly by postal code.  
Further, most system operators only have access to hourly cloud cover data for the weather 
stations they use to forecast loads.  For years, load forecasters have lived by the assumption that 
hourly weather data for a handful of weather stations was sufficient to produce accurate short-
term load forecasts.  This begs the question, is having an estimate of total installed capacity by 
transmission zone coupled with hourly cloud cover data for a handful of weather stations that span the 
load zone sufficient to capture the overall impact of solar PV generation on loads?    

To answer this question, an alternative time series of solar PV generation is developed by 
combining the total installed solar PV capacity estimates by load zone developed by CPR with 
the hourly cloud cover observations for the weather stations that the California ISO uses to 
drive their load forecasts.  The result is a time series of solar PV generation for the load zones:  
PG&E, PG&E Bay Area, PG&E Non-Bay Area, SCE, SCE Coastal, SCE Inland, and SDG&E.  By 



 

35 

comparing the forecast performance of the short-term load forecasts with and without cloud 
cover driven solar PV generation, the benefit of doing “something” over doing “nothing” can be 
quantified.  Further, a baseline of short-term load forecast performance is established, against 
which the short-term load forecast using CPR’s detail bottom-up solar PV generation estimates 
can be evaluated.  The remainder of this section describes how hourly cloud cover is combined 
with solar PV capacity estimates to develop forecasts (estimates) of solar PV generation by load 
zone. 

The approach used to develop cloud cover solar PV generation estimates is necessarily simple 
given the information available is limited to: 

• Total Installed solar PV capacity (MW) by day and load zone, and 

• Hourly Cloud Cover in percentage terms by hour, day and weather station. 

Given this limited set of data, begin with the following simplified engineering relationship.     

Equation 39: Simplified Solar Generation Forecast Model 

SolarGenerationd,i = SolarInsolationd,i × SolarPanelCapacityd × SolarPanelEfficiencyd,i 

Where,  

SolarGenerationd,i is the electricity generated on day (d) time interval (i) in Watts Out 

SolarInsolationd,i is the solar energy delivered to the panel in Watts In
m2�  

SolarPanelCapacityd is the installed capacity in m2 

SolarPanelEfficiencyd,i is the solar panel efficiency in Watts Out
Watts In�  

To help fix ideas, assume solar insolation at noon of June 12 is 1,000 Watts/m2, installed BTM 
solar PV capacity is 2.5 kW, and the BTM solar PV system efficiency (Sunlight to AC) is 15%.  If 
one assumes 150 Watts/m2 for the average panel size, the solar panel area would be 
approximately 16.66 m2 (computed as 2500 Watts over 150 Watts/m2).  With these numbers you 
have: 

Equation 40: Solar Generation Forecast Example 

SolarGeneration = 2500 Watts = 1000 Watts
m2� × 16.667m2 × 0.15 

Factoring in Temperature Impacts:  The hotter a solar panel becomes, the less efficient it is in 
converting sun energy into useful electricity. This leads to the following adjustment to the solar 
panel efficiency. 

Equation 41: Temperature Driven Solar Panel Efficiency Equation 

 SolarPanelEfficiencyd,i  = RatedEfficiency × �1 − �MAX�Tempd,i − ThresholdTemp, 0� × ∇�� 

Where, 
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SolarPanelEfficiencyd,i  is the solar panel operating efficiency for day (d) and time 
interval (i) 

RatedEfficiency is the peak output efficiency 

Tempd,iis the temperature of the panel 

ThresholdTemp is the temperature above which the efficiency of the panel degrades 

∇ is the rate of efficiency degradation per degree (−0.48% Per ℃ or − 0.27% Per ℉). 

Factoring in Cloud Cover:  Cloud cover lowers the output of a solar panel by reducing the 
amount of solar energy (for example solar insolation) reaching the panel.  While the exact 
impact of cloud cover on a particular location is difficult to measure, one can assume that at 
100% cloud cover, only about 20% of the solar flux reaches Earth’s surface.  That is, the cloud 
albedo is 80% at 100% cloud cover.  This information can be used to adjust the engineering 
estimate of solar insolation by incorporating the following relationship. 

Equation 42: Cloud Driven Solar Insolation 

CloudAlbedod,i  = CloudCoverPercentaged,i  × 80% 

SolarInsolationd,i  = SolarFluxd × COS�∅𝑑𝑖 �× �1 − CloudAlbedod,i� 

Where,  

SolarFluxd is the amount of solar radiation hitting the Earth’s atmosphere on any day of the 
year and is measured in Watts/m2 .  Solar Flux equals the Solar Constant Output of 1367 
Watts/m2 adjusted for seasonal variation due to the annual cycle in the distance between 
Earth and Sun. 

COS�∅𝑑𝑖 � is the solar zenith angle which is used to adjust the amount of solar energy striking 
a horizontal plane on Earth’s surface for any location and time of day 

The final engineering model of solar generation can then be written as follows: 

Equation 43: Solar Generation Output 

SolarGenerationd,i = SolarFluxd,i × COS�∅𝑑𝑖 � × �1 − CloudAlbedod,i� × SolarCapacityd,i  ×
�1 − �MAX�Tempd,i − ThresholdTemp, 0� × ∇��  

Listed below are the practical steps used to develop the historical time series of solar PV 
generation by load zone. 

Step 1: Construct an Historical Time Series of Solar Insolation.  Given the above engineering 
relationship, how does one predict the amount of solar energy that will reach the surface of a 
solar panel for any location and time?  For this study, the National Oceanic & Atmospheric 
Administration (NOAA) solar calculation spreadsheet4 is used to derive estimates of solar 
                                                      
4  http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html 

http://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html
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insolation by location and day of year for roughly the geographic midpoint (measured as 
latitude/longitude) for the following load zones:  PG&E Bay Area, PG&E Non-Bay Area, SCE 
Coastal, SCE Inland and SDG&E.  This step provides daily estimates of solar insolation at Solar 
Noon for the period January 1, 2010 through December 31, 2015.   

To compute a value of solar insolation for a specific time-of-the-day, one needs to know the 
Solar Altitude Angle for that time point.  Again, information available on the NOAA 
spreadsheet is used, which gives an estimate of the time of Solar Noon that corresponds to a 
Solar Altitude Angle of 90 degrees.  Estimated sunrise and sunset times are also provided.  
Since the Solar Altitude Angle at the time of sunrise and sunset is 0 degrees, one can back into 
the average decay per minute in the Solar Altitude Angle.  Specifically: 

Equation 44: Computing Solar Altitude Angle 

Angle Lost Per Minuted = 90°
(Time of Solar Noond − Time of Sun Rised)�  

Typically, the value for the Angle Lost Per Minute will range between 0.2 and 0.31 degrees per 
minute, with the average value of approximately 0.25 degrees per minute; or about 4 minutes 
for every degree.   

Given this value, the Solar Altitude Angle for any period can be computed as: 

Equation 45: Solar Altitude Angle 

SolarAltitudeAngled,i  =
90° − (Angle Lost Per Minuted  × |Time of Solar Noond  − Time of Interval of the dayd |)  

Where, the absolute value function returns the number of minutes between the time of Solar 
Noon and the time of the time interval (i) under study.   

Given the Solar Insolation at Solar Noon, the Solar Insolation for time interval (i) can be 
computed as follows: 

Equation 46: Computing Solar Insolation by day and time interval 

SolarInsolationd,i = SolarInsolationdSolarNoon × COS�SolarAltitudeAngled,i − 90°� 

Applying these equations to the solar insolation data for PG&E Bay Area, PG&E Non-Bay Area, 
SCE Coastal, SCE Inland, and SDG&E results in 15-minute level solar insolation values for each 
15-minute interval from January 1, 2010 through December 31, 2015.   

Step 2: Constructing Estimates of Solar PV generation Capacity.  For this study, the CPR-
developed historical time series of solar installations by load zone are used here to develop the 
solar PV generation estimates.   

Step 3: Cloud Cover Driven Solar PV Generation.  Next, hourly cloud cover and temperature 
values from the weather stations assigned to each load zone are used to derive estimates of 
solar PV generation that will be used in the load forecasting models.  The list of weather stations 
used by the California ISO and their mapping to the five California ISO load zones are 
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presented in Table 3.  A comparison of the Cloud Cover solar generation estimates to the CPR 
estimates for the week of May 24, 2015 are presented in Figure 5 through Figure 9.  In general, 
the CPR estimates are smoother than the Cloud Cover driven estimates.  This reflects the data 
smoothing inherent in the bottom-up approach implemented by CPR versus the hourly 
choppiness that comes with hourly cloud cover observations for a small number of weather 
stations.  It is anticipated that the smoother CPR estimates will lead to less volatile measured 
load forecasts than the cloud-cover driven estimates.  If this observation is proven true, then 
that is a distinct advantage of the CPR approach because adding load forecast uncertainty is not 
desirable.  

Table 3: Mapping of Weather Stations to California ISO Load Zones 

`  
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Figure 5: CPR versus Cloud Cover (CC) Solar Generation (MWh): PG&E Bay Area 

 
 

Figure 6: CPR versus Cloud Cover (CC) Solar Generation (MWh): PG&E Non-Bay Area 
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Figure 7: CPR versus Cloud Cover (CC) Solar Generation (MWh): SCE Coastal 

 
 

Figure 8: CPR versus Cloud Cover (CC) Solar Generation (MWh): SCE Inland 
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Figure 9: CPR versus Cloud Cover (CC) Solar Generation (MWh): SDG&E 
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CHAPTER 4: 
Forecast Simulations 
A key objective of this study is to evaluate the load forecast accuracy improvements that can be 
expected by incorporating forecasts of solar PV generation into the load forecast framework.  To 
meet this study objective, a series of h-step ahead forecast simulations are computed for each of 
the four modeling approaches:  (a) California ISO Baseline Model, (b) Error Correction, (c) 
Reconstituted Loads, and (d) Model Direct.   The simulation date range is from January 1, 2012 
through June 8, 2015.  

The process steps in the simulation are: 

1. Start at midnight of January 1, 2012, 

2. Import Metered Load data through the top of the simulation hour, 

3. Import weather data for the forecast horizon, 

4. Import solar PV generation estimates for the forecast horizon, 

5. Generate a 48-hour ahead forecast of measured loads by Load Zone (PG&E, PG&E Bay 
Area, PG&E Non-Bay Area, SCE, SCE Coastal, SCE Inland, SDG&E) and Forecast 
Method (Baseline, Error Correction, Reconstituted, Model Direct), 

6. Store to an analysis database the: 15, 30, 45, 60, 90, 120, 180, 240, 300, 360 minute ahead 
and 24-hour ahead measured load forecasts by Load Zone and Forecast Approach, and 

7. Increment to the next hour in the simulation horizon and repeat steps 2 through 7. 

The data available to the models at the time of the forecast are: 

• Actual 15-Minute level measured loads through the end of the prior hour, 

• Hourly observed weather data by weather station for all weather concepts, including: 
Temperature, Dew Point, Cloud Cover, Wind Speed, and Wind Direction, and 

• Estimated (Forecasted) 15-Minute level solar PV generation. 

Observed weather conditions are used to eliminate load forecast error driven by weather 
forecast errors.   

Solar PV Generation Forecasts: Two sets of estimated solar PV generation are used in the 
simulations: (a) cloud cover driven and (b) CPR detailed bottom-up estimates.  The use of cloud 
cover based solar generation estimates mimic the initial approach many system operators have 
implemented as a first pass at trying to improve their eroding load forecasts.  A comparison of 
the results from the different estimates should demonstrate the benefit of the more detailed 
approach implemented by CPR.   

The list of simulations that were run are presented in Table 4 below.  
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Table 4: List of Forecast Simulations 

 

 

4.1 Forecast Performance Measurements 
A common metric used to evaluate load forecast performance is the Mean Absolute Percentage 
Error (MAPE).  This metric can be interpreted as the average percentage error in absolute terms 
that can be expected from a load forecast model.  In general, load forecast MAPEs become 
bigger the longer the forecast horizon.  Formally, the MAPE is computed as: 
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Equation 47: Mean Absolute Percentage Error 

MAPEh
Z,A =

∑ ∑
�Ld,i
Z − Fh,d,i

Z,A �
Ld,i
Z × 100I

i=1
D
d=1

D × I
 

Where,  

MAPEh
Z,A is the Mean Absolute Percentage Error for Load Zone (Z) for the h-step-ahead 

load forecast (h) using forecast approach (A) 

Ld,i
Z  is measured load for Load Zone (Z), day (d), and time interval (i) 

Fd,i
Z,h,A is the h step ahead forecast of measured load for Load Zone (Z), day (d) and 

interval (i) use forecast approach (A) 

I is the number of non-dark time intervals (i) over which the forecast MAPE is computed 

D is the number of days in forecast simulation 

To facilitate identifying improvements in forecast performance relative to the baseline forecast 
the forecast MAPE values are presented as a percentage change relative to the baseline MAPE.  
Specifically,  

Equation 48: Percentage Change in MAPE Relative to the Baseline MAPE 

PercentMAPEChangeh
Z,A =

�MAPEh
Z,A − MAPEh

Z,Baseline�
MAPEh

Z,Baseline × 100 

In this case, a negative percent change in the forecast MAPE of the alternative approach 
represents an improvement in forecast performance over the baseline forecast. 

A second metric for evaluating forecast accuracy improvements is Forecast Skill.  This is a 
commonly used statistic in renewable energy forecasting studies, which tend to compare the 
performance of an alternative approach relative to a baseline approach such as a persistence 
forecast.  Forecast Skill metrics also avoid a problem inherent in the use of MAPE for evaluating 
the forecast performance of solar and wind generation that occurs when the observed 
generation value run close to zero.  Small generation values tend to be associated with large 
percentage forecast errors not necessarily because there are large absolute forecast errors, but 
rather the error is divided by a small number.   

For this study, Forecast Skill measures the percentage of forecast simulations that the candidate 
forecast approach produced, a smaller in absolute terms load forecast error than the baseline 
load forecast.  In this case, a forecast approach can be said to lead to an improvement on 
average in load forecast accuracy if the Forecast Skill is greater than 50% of the time.  Formally, 
Forecast Skill is computed as: 
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Equation 49: Forecast Skill 

Skillh
Z,A =

∑ ∑ ��ForecastErrorBaselined,i
Z,h� > �ForecastErrorApproachd,i

Z,h,A��I
i=1

𝐷
𝑑=1

D × I
× 100 

Where, 

Skillh
Z,A is the percentage of time that the h-step ahead forecast for Load Zone (Z) from 

the alternative approach (A) was more accurate than the baseline forecast 

��ForecastErrorBaselined,i
Z,h� > �ForecastErrorApproachd,i

Z,h,A�� returns a value of 1.0 if the 
baseline forecast error is greater in absolute value than the forecast error of the 
alternative model approach, otherwise returns 0.0 

These first two metrics focus on the first moment of the forecast error distribution.  In addition 
to reducing forecast errors on average, it is of interest to test whether or not the alternative 
forecast approaches reduce the overall dispersion of forecast errors.  In this case, forecast error 
dispersion is measured by the Forecast Standard Deviation.  Formally, the Forecast Standard 
Deviation is computed as: 

Equation 50: Forecast Standard Deviation 

σh
Z,A = �

1
D × I

� � �Ld,i
Z − Fd,i

Z,h,A�
2I

i=1

𝐷

𝑑=1
 

Where, 

 σh
Z,A is the Standard Deviation of the forecast errors for the h-step-ahead load forecast 

for Load Zone (Z) using load forecast approach (A) 

To ease comparisons the change in the Standard Deviation of the forecast errors of each 
approach relative to the baseline Standard Deviation is constructed as follows: 

Equation 51: Percent Change in Forecast Error Volatility 

PercentStandardDeviationChangeh
Z,A =

�σh
Z,A − σh

Z,Baseline�
σh
Z,Baseline × 100 

In this case, a negative percent change in the forecast Standard Deviation of the alternative 
approach represents an improvement in forecast performance over the baseline forecast. 

Collectively, the team is looking to evaluate whether or not the alternative approaches reduce 
not only the mean or average forecast error, but also the dispersion of forecast errors.     
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CHAPTER 5: 
Simulation Results Summary 
The results of forecast simulations for January 1, 2015 through June 30, 2015 are presented 
below.  This period was selected since it represents the most recent data and the period over 
which PV installations were at their highest.  The results from earlier periods are less applicable 
to the forecast problem currently faced by the California ISO because the earlier periods had 
significantly lower penetration of PV relative to 2016 values. 

The exhibits present the forecast MAPE, Skill, and Error Standard Deviation by: 

• Forecast Horizon 

o 15 Minutes Ahead 

o 30 Minutes Ahead 

o 45 Minutes Ahead 

o 60 Minutes Ahead 

o 90 Minutes Ahead 

o 120 Minutes Ahead (2 Hours Ahead) 

o 180 Minutes Ahead (3 Hours Ahead) 

o 240 Minutes Ahead (4 Hours Ahead) 

o 300 Minutes Ahead (5 Hours Ahead) 

o 360 Minutes Ahead (6 Hours Ahead) 

o 720 Minutes Ahead (12 Hours Ahead) 

o 1440 Minutes Ahead (24 Hours Ahead) 

• Forecast Approach 

o Baseline Load Forecast Model with no Behind-the-Meter Solar Generation 

o Error Correction Approach using Cloud Cover driven Solar Generation estimates 

o Model Direct Approach using Cloud Cover driven Solar Generation estimates 

o Reconstituted Loads Approach using Cloud Cover driven Solar Generation 
estimates 

o Error Correction Approach using CPR’s Solar Generation estimates 

o Model Direct Approach using CPR’s Solar Generation estimates 

o Reconstituted Loads Approach using CPR’s Solar Generation estimates 
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The results are presented for the following segmentations: 

• Load Zones: 

o CAISO Total 

o PG&E Total 

o PG&E Bay Area 

o PG&E Non-Bay Area 

o SCE Total 

o SCE Coastal 

o SCE Inland 

o SDG&E Total 

• Seasons: 

o Winter (October through March) 

o Summer (April through September) 

• Cloud Cover Conditions 

o Clear: average cloud cover percentage less than 75% 

o Cloudy: average daily cloud cover percentage greater than or equal to 75% 

The results are summarized in Figure 10 through Figure 49.  On each figure, values that 
represent an improvement over the baseline load forecast are highlighted in green.  

5.1 CAISO Total Simulation Results 
Figure 10 through Figure 14 presents the results for the California ISO total (i.e., the sum of the 
PG&E, SCE, and SDG&E zone loads) across all seasons, and cloud cover conditions.   

• Improvement over Baseline: A mix or ‘ensemble’ of the different approaches can result 
in a reduction in forecast accuracy.   Although these improvements are largely in the 
single (relative) percentage points, the improvements still have measurable potential 
savings to California of approximately $2 Million per year. 5   

• Forecast Horizons of 15 Minutes Ahead to Four Hours Ahead:  For forecast horizons of 
up to four hours ahead, the Model Direct approach consistently outperformed the 
baseline load forecast model with both a reduced MAPE and smaller dispersion of 

                                                      
5 Based on an average annual California ISO load of 26 GW and an average regulation cost of $9/MWh 
per MacDonald e. al ‘Demand Response Providing Ancillary Services A Comparison of Opportunities 
and Challenges in the US Wholesale Markets’, Grid-Interop Forum 2012 
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forecast errors.  Further, the Model Direct approach performed better than the baseline 
forecast when using both Cloud Cover driven and CPR computed solar generation 
estimates.  However, the Model Direct approach when combined with the CPR solar 
generation estimates outperformed the same approach combined with the Cloud Cover 
driven solar generation estimates.   

• Forecast Horizons of Five Hours Ahead to Six Hours Ahead:  For forecast horizons of 
five hours ahead to six hours ahead, the results are mixed between the Model Direct 
combined with CPR solar generation estimates and the Reconstituted Loads approach 
combined with CPR solar generation estimates.  Using Forecast Skill as a metric, the 
Reconstituted Loads approach outperformed the baseline forecast.  However, the forecast 
error dispersion grew with this approach.   

• Forecast Horizons of 12 Hours Ahead to 24 Hours Ahead:  For longer-term forecast 
horizons of 12 hours ahead to 24 hours ahead, the Reconstituted Load approach 
combined with CPR solar generation estimates significantly reduced both the forecast 
MAPE and error dispersion.  Over this same forecast horizon, the Error Correction 
approach combined with either Cloud Cover driven or the CPR solar generations 
estimates outperformed the baseline load forecast. This suggests that imposing an a priori 
weight of -1.0 on the solar generation estimates works well for these longer forecast 
horizons.   

• Seasonal Differences:  The conclusions do not change substantially when the forecast 
results are segmented between winter and summer seasons.  The Model Direct approach 
utilizing the CPR solar generation estimates improves the load forecast performance for 
forecast horizons of 15 minutes ahead to five hours ahead.  For longer forecast horizons, 
the Reconstituted Load approach out performs the baseline load forecast.  The main 
difference between the seasonal results and the overall results is the Model Direct 
approach using Cloud Cover driven solar generation estimates only perform well during 
the summer season while this approach performed will for forecast horizons from 15 
minutes ahead to four hours ahead over the winter season.   

• Cloud Cover:  The alternative approaches appear to work best under varying cloud 
conditions.  Most notably, the forecast error dispersion is reduced across most forecast 
horizons under the Model Direct and Reconstituted Load approach when combined with 
the CPR solar generation estimates.   
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Figure 10: California ISO Total, All Seasons, All Cloud Cover Conditions 
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Figure 11: California ISO Total, Winter, All Cloud Cover Conditions 
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Figure 12: California ISO Total, Summer, All Cloud Cover Conditions 
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Figure 13: California ISO Total, All Seasons, Clear 
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Figure 14: California ISO Total, All Seasons, Cloudy 
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5.2 PG&E Total Simulation Results 
Figure 15 through Figure 19 presents the results for PG&E total across all seasons, and cloud 
cover conditions.   

• Forecast Horizons of 15 Minutes Ahead to Four Hours Ahead:  For forecast horizons of 
up to four hours ahead, the Model Direct approach consistently outperformed the 
baseline load forecast model with both a reduced MAPE and smaller dispersion of 
forecast errors.  Further, the Model Direct approach performed better than the baseline 
forecast when using both Cloud Cover driven and CPR computed solar generation 
estimates.  However, the Model Direct approach when combined with the CPR solar 
generation estimates outperformed the same approach combined with the Cloud Cover 
driven solar generation estimates.   

• Forecast Horizons of Five Hours Ahead to Six Hours Ahead:  For forecast horizons of 
five hours ahead to six hours ahead, the Error Correction approach combined with CPR 
solar generation estimates outperformed all other approaches.     

• Forecast Horizons of 12 Hours Ahead to 24 Hours Ahead:  For longer-term forecast 
horizons of 12 hours ahead to 24 hours ahead, the baseline model forecasts were on 
average more accurate, but the Error Correction approach combined with the CPR solar 
generation estimates led to a tighter distribution of forecast errors.     

• Seasonal Differences:  The conclusions do not change substantially when the forecast 
results are segmented between winter and summer seasons.  The Model Direct approach 
utilizing the CPR solar generation estimates improves the load forecast performance for 
forecast horizons of 15 minutes ahead to five hours ahead.  For longer forecast horizons 
the Reconstituted Load approach out performs the baseline load forecast.  The main 
difference between the seasonal results and the overall results is the Model Direct 
approach using Cloud Cover driven solar generation estimates only perform well 
during the summer season while this approach performed will for forecast horizons 
from 15 minutes ahead to four hours ahead over the winter season.   

• Cloud Cover:  The alternative approaches appear to work best under varying cloud 
conditions.  Most notably, the forecast error dispersion is reduced across most forecast 
horizons under the Model Direct and Reconstituted Load approach when combined 
with the CPR solar generation estimates.   
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Figure 15: PG&E Total, All Seasons, All Cloud Cover Conditions 
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Figure 16: PG&E Total, Winter, All Cloud Cover Conditions 
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Figure 17:  PG&E Total, Summer, All Cloud Cover Conditions 
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Figure 18: PG&E Total, All Seasons, Clear 
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Figure 19: PG&E Total, All Seasons, Cloudy 
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5.3 PG&E Bay Area Simulation Results 
Figure 20 through Figure 24 presents the results for PG&E Bay Area across all seasons, and 
cloud cover conditions.   

• Forecast Horizons of 15 Minutes Ahead to Four Hours Ahead:  For forecast horizons of 
up to four hours ahead, the Model Direct approach consistently outperformed the 
baseline load forecast model with both a reduced MAPE and smaller dispersion of 
forecast errors.  Further, the Model Direct approach performed better than the baseline 
forecast when using both Cloud Cover driven and CPR computed solar generation 
estimates.  However, the Model Direct approach when combined with the CPR solar 
generation estimates outperformed the same approach combined with the Cloud Cover 
driven solar generation estimates.   

• Forecast Horizons of Five Hours Ahead to Six Hours Ahead:  For forecast horizons of 
five hours ahead to six hours ahead, the Error Correction approach combined with CPR 
solar generation estimates outperformed all other approaches.     

• Forecast Horizons of 12 Hours Ahead to 24 Hours Ahead: For longer-term forecast 
horizons of 12 hours ahead to 24 hours ahead, the baseline model forecasts were on 
average more accurate, but the Error Correction approach combined with the CPR solar 
generation estimates led to a tighter distribution of forecast errors.     

• Seasonal Differences: The main difference between the winter and summer seasons is 
the Model Direct approach when combined with the CPR solar generation estimates 
reduce the forecast error dispersion during the winter months across all forecast 
horizons.  This improvement is limited to the forecast horizons of 15 minutes ahead to 
four hours ahead during the summer season.     

• Cloud Cover: The alternative approaches appear to work best under varying cloud 
conditions.  Most notably, the forecast error dispersion is reduced across most forecast 
horizons under the Model Direct and Reconstituted Load approach when combined 
with the CPR solar generation estimates.   
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Figure 20: PG&E Bay Area, All Seasons, All Cloud Cover Conditions 
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Figure 21: PG&E Bay Area, Winter, All Cloud Cover Conditions 
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Figure 22: PG&E Bay Area, Summer, All Cloud Cover Conditions 
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Figure 23: PG&E Bay Area, All Seasons, Clear 
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Figure 24: PG&E Bay Area, All Seasons, Cloudy 
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5.4 PG&E Non-Bay Area Simulation Results 
Figure 25 through Figure 29 presents the results for PG&E Non-Bay Area across all seasons, and 
cloud cover conditions.   

• Forecast Horizons of 15 Minutes Ahead to Four Hours Ahead: For forecast horizons of 
up to four hours ahead, the Model Direct approach consistently outperformed the 
baseline load forecast model with both a reduced MAPE and smaller dispersion of 
forecast errors.  Further, the Model Direct approach performed better than the baseline 
forecast when using both Cloud Cover driven and CPR computed solar generation 
estimates.  However, the Model Direct approach when combined with the CPR solar 
generation estimates outperformed the same approach combined with the Cloud Cover 
driven solar generation estimates.   

• Forecast Horizons of Five Hours Ahead to Six Hours Ahead: For forecast horizons of 
five hours ahead to six hours ahead, the Error Correction approach combined with CPR 
solar generation estimates outperformed all other approaches.     

• Forecast Horizons of 12 Hours Ahead to 24 Hours Ahead: For longer-term forecast 
horizons of 12 hours ahead to 24 hours ahead, the baseline model forecasts were on 
average more accurate.     

• Seasonal Differences: The main difference between the winter and summer seasons is 
the Reconstituted Load approach when combined with the CPR solar generation 
estimates performed better with the longer forecast horizons during the summer season 
than the winter season.     

• Cloud Cover: The alternative approaches appear to work best under varying cloud 
conditions.  Most notably, the forecast error dispersion is reduced across most forecast 
horizons under the Model Direct and Reconstituted Load approach when combined 
with the CPR solar generation estimates.   
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Figure 25: PG&E Non-Bay Area, All Seasons, All Cloud Cover Conditions 
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Figure 26: PG&E Non-Bay Area, Winter, All Cloud Cover Conditions 
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Figure 27: PG&E Non-Bay Area, Summer, All Cloud Cover Conditions 
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Figure 28: PG&E Non-Bay Area, All Seasons, Clear 
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Figure 29: PG&E Non-Bay Area, All Seasons, Cloudy 
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5.5 SCE Total Simulation Results 
Figure 30 through Figure 34 presents the results for SCE Total across all seasons, and cloud 
cover conditions.   

• Forecast Horizons of 15 Minutes Ahead to Four Hours Ahead.  For forecast horizons of 
up to four hours ahead, the Model Direct approach consistently outperformed the 
baseline load forecast model with both a reduced MAPE and smaller dispersion of 
forecast errors.  Further, the Model Direct approach performed better than the baseline 
forecast when using both Cloud Cover driven and CPR computed solar generation 
estimates.  However, the Model Direct approach when combined with the CPR solar 
generation estimates outperformed the same approach combined with the Cloud Cover 
driven solar generation estimates.   

• Forecast Horizons of Five Hours Ahead to Six Hours Ahead.  For forecast horizons of 
five hours ahead to six hours ahead, the Error Correction approach combined with CPR 
solar generation estimates outperformed all other approaches.     

• Forecast Horizons of 12 Hours Ahead to 24 Hours Ahead.  For longer-term forecast 
horizons of 12 hours ahead to 24 hours ahead, the baseline model forecasts were on 
average more accurate.     

• Seasonal Differences.  The main difference between the winter and summer seasons is 
the Model Direct approach when combined with the CPR solar generation estimates 
performed during the winter season for forecast horizons of 15 minutes ahead to six-
hours ahead.  In contrast, the Model Direct approach outperformed the baseline model 
during the summer season for forecast horizons up to four-hours ahead.     

• Cloud Cover.  The alternative approaches appear to work best under varying cloud 
conditions.  Most notably, the forecast error dispersion is reduced across most forecast 
horizons under the Model Direct and Reconstituted Load approach when combined 
with the CPR solar generation estimates.   
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Figure 30:  SCE Total, All Seasons, All Cloud Cover Conditions 
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Figure 31: SCE Total, Winter, All Cloud Cover Conditions 
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Figure 32: SCE Total, Summer, All Cloud Cover Conditions 
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Figure 33: SCE Total, All Seasons, Clear 
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Figure 34: SCE Total, All Seasons, Cloudy 
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5.6 SCE Coastal Simulation Results 
Figure 35 through Figure 39 presents the results for SCE Coastal across all seasons, and cloud 
cover conditions.   

• Forecast Horizons of 15 Minutes Ahead to Four Hours Ahead.  For forecast horizons of 
one-hour ahead up to four hours ahead, only the Model Direct approach combined with 
the CPR solar generation estimates outperformed the baseline load forecast model.  For 
forecast horizons of less than one-hour ahead the baseline load forecast outperformed 
the alternative approaches. 

• Forecast Horizons of Five Hours Ahead to Six Hours Ahead.  For forecast horizons of 
five hours ahead to six hours ahead, the Model Direct approach combined with CPR 
solar generation estimates outperformed all other approaches.     

• Forecast Horizons of 12 Hours Ahead to 24 Hours Ahead.  For longer-term forecast 
horizons of 12 hours ahead to 24 hours ahead, the Error Correction and Reconstituted 
Load approaches were on average more accurate than the baseline load forecast.     

• Seasonal Differences.  The main difference between the winter and summer seasons is 
the Model Direct approach when combined with the CPR solar generation estimates 
performed during the winter season for forecast horizons of 30 minutes ahead to 24 
hours ahead.  In contrast, the Model Direct approach did not outperformed the baseline 
model during the summer season across all forecast horizons.     

• Cloud Cover.  In contrast to other load zones, the alternative approaches appear to work 
best under clear cloud conditions.  Most notably, the Model Direct approach when 
combined with the CPR solar generation estimates outperformed the baseline load 
forecast over forecast horizons of 30 minutes ahead to 24 hours ahead.   
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Figure 35: SCE Coastal, All Seasons, All Cloud Cover Conditions 

 
 
  



 

80 

Figure 36: SCE Coastal, Winter, All Cloud Cover Conditions 
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Figure 37: SCE Coastal, Summer, All Cloud Cover Conditions 
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Figure 38: SCE Coastal, All Seasons, Clear 
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Figure 39: SCE Coastal, All Seasons, Cloudy 
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5.7 SCE Inland Simulation Results 
Figure 40 through Figure 44 presents the results for SCE Inland across all seasons, and cloud 
cover conditions.   

• Forecast Horizons of 15 Minutes Ahead to Four Hours Ahead:  For forecast horizons of 
one-hour ahead up to four hours ahead, only the Model Direct approach combined with 
CPR’s and the Cloud Cover driven estimates of solar generation outperformed the 
baseline load forecast model.   

• Forecast Horizons of Five Hours Ahead to Six Hours Ahead: For forecast horizons of 
five hours ahead to six hours ahead, the Model Direct approach combined with CPR 
solar generation estimates outperformed all other approaches.     

• Forecast Horizons of 12 Hours Ahead to 24 Hours Ahead: For longer-term forecast 
horizons of 12 hours ahead to 24 hours ahead, the Error Correction and Reconstituted 
Load approaches were on average more accurate than the baseline load forecast.     

• Seasonal Differences: The main difference between the winter and summer seasons is 
the Error Correction approach when combined with the CPR solar generation estimates 
performed well during the summer season, but not so in the winter season.       

• Cloud Cover: In general, the alternative approaches combined with the CPR solar 
generation estimates worked better under Cloudy conditions.     
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Figure 40: SCE Inland, All Seasons, All Cloud Cover Conditions 
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Figure 41: SCE Inland, Winter, All Cloud Cover Conditions 
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Figure 42: SCE Inland, Summer, All Cloud Cover Conditions 
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Figure 43:  SCE Inland, All Seasons, Clear 
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Figure 44: SCE Inland, All Seasons, Cloudy 
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5.8 SDG&E Total Simulation Results 
Figure 45 through Figure 49 presents the results for SDG&E across all seasons, and cloud cover 
conditions.   

• Forecast Horizons of 15 Minutes Ahead to Four Hours Ahead:  For forecast horizons of 
up to four hours ahead, the Model Direct approach consistently outperformed the 
baseline load forecast model with both a reduced MAPE and smaller dispersion of 
forecast errors.  Further, the Model Direct approach performed better than the baseline 
forecast when using both Cloud Cover driven and CPR computed solar generation 
estimates.  However, the Model Direct approach when combined with the CPR solar 
generation estimates outperformed the same approach combined with the Cloud Cover 
driven solar generation estimates.   

• Forecast Horizons of Five Hours Ahead to Six Hours Ahead: For forecast horizons of 
five hours ahead to six hours ahead, the Model Direct approach combined with both 
Cloud Cover driven and CPR solar generation estimates outperformed the baseline load 
forecast in terms of both accuracy and reduction of forecast error dispersion.     

• Forecast Horizons of 12 Hours Ahead to 24 Hours Ahead: For longer-term forecast 
horizons of 12 hours ahead to 24 hours ahead, again the Model Direct approach 
combined with both Cloud Cover driven and CPR solar generation estimates 
outperformed the baseline load forecast in terms of both accuracy and reduction of 
forecast error dispersion.     

• Seasonal Differences: The main difference between the winter and summer seasons is 
that the performance of the Reconstituted Loads approach degrades during the summer 
season.       

• Cloud Cover: There is no substantial differences between the alternative approaches 
performance under cloudy versus sunny conditions.   
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Figure 45: SDG&E Total, All Seasons, All Cloud Cover Conditions 
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Figure 46: SDG&E Total, Winter, All Cloud Cover Conditions 
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Figure 47:  SDG&E Total, Summer, All Cloud Cover Conditions 
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Figure 48:  SDG&E Total, All Seasons, Clear 
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Figure 49:  SDG&E Total, All Seasons, Cloudy 
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CHAPTER 6: 
Statistical Estimates of Solar PV Load Impacts 
A benefit of the Model Direct approach is that it allows the statistical models through the 
process of model estimation to determine the forecasted load impact of a MW of Solar PV 
generation.  Engineering principles suggest that every 1 MW of Solar PV generation directly 
offsets 1 MW of load.  Based on these principles, the estimated coefficients on the Solar PV 
variables are expected to be equal to or very close to -1.0.  In fact, the coefficients on the Solar 
PV variables in the Error Correction and Reconstituted Load approaches are explicitly set equal 
to -1.0 for just this very reason.  Engineering principles, however, do not account for behavioral 
changes that may have taken place with the penetration of Solar PV.  A plausible behavioral 
change is the increased use of air conditioning equipment post installation of Solar PV.  Prior to 
installing Solar PV, consumers may not have run their air conditioners when they were at work 
to save money.  Post Solar PV installation, the idea that they now have “free” electricity might 
lead consumers to leave their air conditioners on all the time regardless of whether they are 
home or not.  In this example, 1 MW of Solar PV generation still offsets 1 MW of load, but that 
reduction may be masked by a load increase driven by the behavioral change.  As a result, an 
engineering-based a priori value of -1.0 for the estimated coefficient on the Solar PV variable 
may not be realized.   

Other confounding factors include prevailing weather conditions and the mix of space heating 
and space conditioning that exists in the load zone.  A hot, cloudy day may lead to the lower 
Solar PV generation value being offset by higher air conditioning loads especially in load zones 
that have high penetrations of air conditioning.  That same hot, cloudy day in an area with low 
air conditioning saturations may have the full impact of the Solar PV generation because of the 
lack of offsetting air conditioning loads.  In a similar fashion, a cold, cloudy morning might lead 
to the load increase associated with lower Solar PV generation being compounded by an 
increase in electric space heating loads.   

In general, the observed load impact of Solar PV generation will be complicated by weather and 
behavioral driven utilization of space conditioning equipment.  Without detailed measurement 
of end-use equipment loads, it is difficult for a statistical model to isolate the impact of Solar PV 
generation on measured loads.  Unfortunately, the challenge of isolating the impact of Solar PV 
on measured loads will only become more complex with saturation of electric vehicle charging 
and behind-the-meter storage, which will provide consumers flexibility with when they will use 
the electricity generated by their solar panels.  In this soon-to-be-here world, the 1 MW of solar 
generation at Noon may offset 1 MW of vehicle charging at midnight.  This type of behavioral 
change will further mask the load impact of Solar PV generation.   

Presented in Figure 50 through Figure 53 are the statistically estimated load impacts under 
average solar and maximum solar conditions for the California ISO total and each of the load 
zones.  In the figures, the dashed yellow line represents CPR’s estimate of maximum Solar PV 
generation over the 2014-2015 period.  The blue dashed line represents CPR’s estimate of 
average Solar PV Generation over the same period.  The solid gold line is the statistically 
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adjusted maximum Solar PV generation impact that is computed as the product the CPR’s 
maximum Solar PV generation and the estimated coefficient on the Solar PV variable from each 
of the 96 Day-Ahead models.  The solid blue line is the statistically adjusted average Solar PV 
generation impact that is computed as the product the CPR’s average Solar PV generation and 
the estimated coefficient on the Solar PV variable from each of the 96 Day-Ahead models.   

Observations about these data are outlined below.  

• On average, the estimated coefficients place less weight on the Solar PV generation in 
the mid-morning hours (08:00 to Noon) than the mid-afternoon hours (Noon to 16:00).  
During the mid-morning hours, the load forecast is adjusted down by approximately 
50% of the Solar PV generation estimate.  In the mid-afternoon hours, the load forecast is 
adjusted down by approximately 77% of the Solar PV estimate.   

• The estimated coefficients on the early morning (pre 08:00) and late afternoon (post 
16:45) potentially indicate a behavioral change associated with the trend in Solar PV 
installations that is leading to higher forecasted loads in both these periods.  This impact 
is most pronounced under maximum solar conditions with an estimated impact of a 
little over 840 MW at 19:00.  Under average solar conditions, the late afternoon pick up 
in loads is estimated to be about 60 MW.  This leads to the potential swing in forecasts of 
late afternoon loads of about 780 MW.   

• All three IOUs display a bump up in loads post 16:45 that is associated with the 
penetration of Solar PV.  At 19:00, SCE estimated impact under maximum solar 
conditions is a little over 540 MW.  Under average solar conditions the average load 
impact at 19:00 is about 30 MW.  This implies a potential swing in forecasted loads 
between a maximum solar condition day and an average solar condition day of about 
510 MW. 

• At 19:00, PG&E estimated impact under maximum solar conditions is a little over 170 
MW.  Under average solar conditions, the average load impact at 19:00 is about 15 MW.  
This implies a potential swing in forecasted loads between a maximum solar condition 
day and an average solar condition day of about 160 MW. 

• At 19:00, PG&E estimated impact under maximum solar conditions is a little over 120 
MW.  Under average solar conditions, the average load impact at 19:00 is about 5 MW.  
This implies a potential swing in forecasted loads between a maximum solar condition 
day and an average solar condition day of about 115 MW. 

• In the early morning hours (pre-08:00) there is a similar forecasted rise in loads 
associated with penetration in Solar PV.  This impact is most pronounced with PG&E 
with an estimated load impact of about 400 MW under maximum solar conditions.  The 
impact on SCE early morning hours is estimated to be a little over 200 MW under 
maximum solar conditions.  SDG&E does not have this type impact. 

The results highlight another operational challenge in that the impact of Solar PV generation 
varies not only in magnitude across the three IOUs, but also the timing of the maximum impact.  
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This reflects the fact that the time at which the sun is at its zenith depends on where the loads 
are located.  The geographic distance between the PG&E, SCE and SDG&E is sufficient to lead 
to differences in when the solar generation impact will be at its highest.  This in turn implies the 
timing and order of magnitude of the late afternoon ramp-up in loads associated with a 
ramping down of Solar PV generation will vary across the year and across the three IOU loads.   

The analysis of the statistically adjusted load impact of Solar PV generation reflects the 
challenge with the Model Direct approach.  In all cases, the engineering-based a priori value for 
the estimated coefficient on the Solar PV generation variable of -1.0 is rejected.  This does not 
mean that one (1) MW of Solar PV generation does not reduce load by one (1) MW.  Rather 
models of measured load are challenged in isolating the impact of Solar PV generation from 
other potentially highly correlated factors that drive weather sensitive loads.  Further, to the 
extent penetration of Solar PV leads to behavioral changes whereby people are taking 
advantage of “free” electricity, then the estimated coefficients on the Solar PV generation 
variables will be skewed to account for these behavioral changes.  While it would be nice to 
have all of the estimated coefficients with a value close to -1.0, the goal is to improve the load 
forecast.  To that end, the statistical models optimize the coefficient values to reduce load 
forecast errors.  By not imposing a priori constraints on the estimated coefficients, the models are 
able to capture the net impact of a growing penetration of Solar PV. 

Figure 50: Estimated Load Impact of Solar PV Generation: California ISO Total 
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Figure 51:  Estimated Load Impact of Solar PV Generation: PG&E Total 

 
Figure 52: Estimated Load Impact of Solar PV Generation: SCE Total 
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Figure 53: Estimated Load Impact of Solar PV Generation: SDG&E Total 
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CHAPTER 7: 
Conclusions 
This interim study investigated if there was a way of improving the load forecast accuracy of 
the California ISO’s existing load forecast models by incorporating forecasts of solar PV 
generation.  The three alternative modeling approaches were subject to a forecast simulation 
using solar PV generation driven by hourly cloud cover for a handful of weather stations and 
solar PV generation estimates developed by CPR using a detailed database of solar PV 
installations combined with satellite imagery.  The conclusions from this interim study include:   

• Not adjusting the California ISO baseline forecast models will only lead to further 
erosion of forecast accuracy and a greater dispersion of forecast errors. 

• For forecast horizons of 15 minutes ahead to four hours ahead, the Model Direct 
approach, when combined with the CPR estimates of solar generation, provides 
improved forecast accuracy and reduced forecast error dispersion over the baseline load 
forecast model.  This finding indicates the benefit of relaxing the assumption that 1 MW 
of BTM solar PV generation leads to a 1 MW reduction in measured load which is a key 
assumption of both the Reconstituted Load and Error Correction approaches.  These 
approaches assume both: (1) no underlying behavioral changes take place as a result of 
the installation of solar PV and (2) the BTM solar PV estimates are correct.  In contrast, 
the Direct Model through the process of model estimation is able to capture the 
influence of behavioral changes on the estimated BTM solar PV generation impact, as 
well as make statistical adjustments for incorrect BTM solar PV estimates.  This finding 
also provides evidence of the benefit of CPR’s more granular approach to developing 
BTM solar PV generation over the use of a cloud cover driven forecast for a handful of 
weather stations. 

• For longer term forecast horizons of six hours ahead to 24 hours ahead, the 
Reconstituted Load approach, combined with the CPR estimates of solar generation, 
provide improvements in both forecast accuracy and reduced forecast error dispersion 
over the baseline load forecast model. 

• This suggests a hybrid forecast framework that leverages the forecasts from the Model 
Direct approach for forecast horizons of 15 minutes ahead to four hours ahead and then 
switches to the Reconstituted Load approach for forecasts horizons of fours-ahead and 
longer.   

• Hourly cloud cover driven estimates of solar generation can provide benefit over doing 
nothing, however the detail bottom-up approach implemented by CPR yields superior 
results. 

• The fact the results vary by season and cloud cover conditions suggest introducing 
seasonal and cloud cover interaction terms in the Model Direct approach.  This would 
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allow the load impact of the solar generation variable to vary by season and cloud cover 
conditions.   

• Other interaction terms including Day-of-the-Week and possibly temperature conditions 
may also prove useful in improving the accuracy of the Model Direct approach. 

• The estimated coefficients of the Model Direct models provide evidence for the potential 
of long-run behavioral changes associated with the increased penetration of solar PV.  If 
true, then the Error Correction and Reconstituted Load approaches will lose forecast 
skill over time as the assumption that the coefficient on the solar PV generation variable 
should be -1.0 becomes invalid.   

Further research is required to determine the extent to which penetration of solar PV is leading 
to behavioral changes.  If the answer is yes, then the load forecasting problem will only become 
more complicated with further penetration of solar PV combined with growth in electric vehicle 
charging, on-site electricity storage, and integration into emerging models such as microgrids. 
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GLOSSARY 

Term Definition 

Azimuth 
The horizontal angular distance between the vertical plane 
containing a point in the sky and true north. 

Behind the Meter (BTM) 
Generation connected on the customer side of the meter that 
impacts net load 

CAISO 
California Independent System Operator – the organization 
that manages the three IOU’s electricity grid in California  

CC 
Cloud Cover, for the interim report, a cloud cover based 
model of BTM PV solar forecasts and generation 

CPR Clean Power Research, Itron's partner on this grant that s 
refining detailed and granular BTM PV solar forecasts 

Direct Normal Irradiance (DNI) 

The amount of solar radiation received per unit area by a 
surface that is always held perpendicular (or normal) to the 
rays that come in a straight line from the direction of the sun 
at its current position in the sky. Typically, you can 
maximize the amount of irradiance annually received by a 
surface by keeping it normal to incoming radiation.[1]  
Irradiance is usually measured in W/m2. 

EPIC Electric Program Investment Charge 

Global Horizontal Irradiance 
(GHI)  

Global Horizontal Irradiance is the total amount of 
shortwave radiation received from above by a horizontal 
surface. 

Insolation 
A measure of solar radiation energy received on a given 
surface area in a given time. It is commonly expressed as 
kilowatt-hours per square meter per day (kWh/(m2·day)).  

Inverter 
An electric conversion device that converts direct current 
(DC) electricity into alternating current (AC) electricity. 

Inverter Efficiency The AC power output of the inverter divided by the DC 
power input. 

IOU 
Investor Owned Utility; in California there are three; PG&E, 
SCE, and SDG&E 

Net Load 
The load seen at the customer meter, or the actual load 
minus any generation.  For this interim report, this refers to 
the aggregate of al customer net load at either the California 
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ISO zone, IOU, or California ISO level 

Orientation The azimuth and tilt of a PV system. 

PG&E 
Pacific Gas and Electric; the IOU that provides natural gas 
and electricity to much of Northern California 

SCE 
Southern California Edison; the IOU that provides electricity 
to much of Southern California outside of San Diego 

SDG&E  
San Diego Gas and Electric; the IOU that provides natural 
gas and electricity to San Diego and the surrounding area 

Solar Irradiance Radiant energy emitted by the sun, particularly 
electromagnetic energy. 

Solar Noon 

The moment when the sun appears highest in the sky 
(nearest zenith), compared to its positions during the rest of 
the day.  It occurs when the sun is transiting the celestial 
meridian. 

Solar PV 

Solar Photovoltaic; a technology that uses semiconductors to 
convert solar irradiance into DC electrical power.  This DC 
electrical power is usually converted to AC electrical power 
uses inverter(s). 
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